Log in

Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Acoustofluidics inside the microchannel has already found its wide applications recently. Acoustic streaming and radiation force are two underlying mechanisms that determine the trajectory of microparticles and cells in the manipulation. Critical particle size of viscous effects is found to be about 1.6 µm in the conventional rectangular microchannel (W × H = 380 m × 160 m) at the frequency of 2 MHz, below which the acoustic streaming dominants, and is independent of the driving voltage. In order to effectively adjust such a critical size, a approach is proposed and evaluated numerically to enhance the acoustic streaming by adding some protrusions (i.e., in the shape of a wedge, rod, half-ellipse) to the middle of the top or bottom wall. It is found that the resonant frequency and acoustic pressure will decrease and the acoustic streaming velocity will increase significantly, respectively, with the increase of protrusion height (up to 30 µm while kee** the width the same as 8 µm). Subsequently, trajectory motion patterns of microparticles have apparent changes in comparison to those inside the rectangular microchannel, and acoustic streaming can even dominate the motion of large microparticles (i.e., 10 µm). As a result, the critical particle size could be increased up to 72.5 µm. Furthermore, different protrusion shapes (i.e., wedge, rod, half-ellipse) on the top wall were compared. The sharpness of protrusion at its tip seems to determine the acoustic streaming velocity. The wedge attached to the bottom wall had higher resonant frequency and lower acoustic streaming velocity compared with the top wedge in the same dimension. The patterns of acoustic streaming and microparticle trajectory motion in the microchannel with dual wedges on the top and bottom walls are not the superposition of those of the top and bottom wedge individually. In summary, the geometry of the microchannel has a significant effect on the induced acoustofluidics by the bulk acoustic waves. A much larger acoustic streaming velocity is produced at the tip of the protrusion to change the critical size of microparticles between acoustic streaming and radiation force. It suggests that more applications of acoustofluidics (i.e., mixing and sonoporation) to microparticles and cells in various sizes are feasible by designing an appropriate geometry of the microchannel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • D. Ahmed, X. Mao, B.K. Juluri, T.J. Huang, Microfluid. Nanofluid. 7(5), 727–731 (2009)

    Article  Google Scholar 

  • M. Antfolk, C. Magnusson, P. Augustsson, H. Lijia, T. Laurell, Anal. Chem. 87(18), 9322–9328 (2015)

    Article  Google Scholar 

  • M. Antfolk, P.B. Muller, P. Augustsson, H. Bruus, T. Laurell, Lab Chip 15(15), 2791–2799 (2014)

    Article  Google Scholar 

  • P. Augustsson, R. Barnkob, S.T. Wereley, H. Bruus, T. Laurell, Lab Chip 11(24), 4152–4164 (2011)

    Article  Google Scholar 

  • R. Barnkob, P. Augustsson, T. Laurell, H. Bruus, Physical Review E 86(5), 056307 (2012)

  • M. Bengtsson, T. Laurell, Anal. Bioanal. Chem. 378, 1716–1721 (2004)

    Article  Google Scholar 

  • M.M. Binkley, M. Cui, W. Li, S. Tan, M.Y. Berezin, J.M. Meacham, Physics of Fluids 31, 082007 (2019)

  • X. Ding, S.-C.S. Lin, B. Kiraly, H. Yue, S. Li, I.-K. Chiang, J. Shi, S.J. Benkovic, T.J. Huang, Proc. Natl. Acad. Sci. u.s.a. 109(28), 11105–11109 (2012)

    Article  Google Scholar 

  • A.A. Doinikov, M.S. Gerlt, J. Dual, Physical Review Letters 124, 154501 (2020)

  • A.A. Doinikov, M.S. Gerlt, J. Dual, Microfluid. Nanofluid. 24, 32 (2020b)

    Article  Google Scholar 

  • J. Dual, T. Schwarz, Lab Chip 12(2), 244–252 (2012)

    Article  Google Scholar 

  • K.D. Frampton, K. Minor, S. Martin, Appl. Acoust. 65(11), 1121–1129 (2004)

    Article  Google Scholar 

  • L.P. Gor’kov, Soviet Physical Doklady 6(9), 773–775 (1962)

    Google Scholar 

  • P. Gravesen, J. Branebjerg, O.S. Jensen, J. Micromech. Microeng. 3(4), 168 (1993)

    Article  Google Scholar 

  • B. Hammarström, T. Laurell, J. Nilsson, Lab Chip 12(21), 4296–4304 (2012)

    Article  Google Scholar 

  • N.R. Harris, M. Hill, S. Beeby, Y. Shen, N.M. White, J.J. Hawkes, W.T. Coakley, Sens. Actuators, B Chem. 95(1–3), 425–434 (2003)

    Article  Google Scholar 

  • A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, J. Xu, Lab Chip 12(21), 4216–4227 (2012)

    Article  Google Scholar 

  • S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, J. Pharm. Sci. 87(8), 922–925 (1998)

    Article  Google Scholar 

  • H. Jönsson, C. Holm, A. Nilsson, F. Petersson, P. Johnsson, T. Laurell, Ann. Thorac. Surg. 78(5), 1572–1577 (2004)

    Article  Google Scholar 

  • M. Koklu, A.C. Sabuncu, A. Beskok, J. Colloid Interface Sci. 351(2), 407–414 (2010)

    Article  Google Scholar 

  • E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Mater. Sci. Eng. r. Rep. 104, 1–32 (2016)

    Article  Google Scholar 

  • T. Laurell, F. Petersson, A. Nilsson, Chem. Soc. Rev. 36(3), 492–506 (2007)

    Article  Google Scholar 

  • I. Leibacher, P. Reichert, J. Dual, Lab Chip 15(13), 2896–2905 (2015)

    Article  Google Scholar 

  • P.B. Muller, R. Barnkob, M.J.H. Jensen, H. Bruus, Lab Chip 12(22), 4617–4627 (2012)

    Article  Google Scholar 

  • N. Nama, P.-H. Huang, T.J. Huang, F. Costanzo, Lab Chip 14(15), 2824–2836 (2014)

    Article  Google Scholar 

  • N. Nama, P.-H. Huang, T.J. Huang, F. Costanzo, Biomicrofluidics 10, 024124 (2016)

  • A. Ozcelik, D. Ahmed, Y. **e, N. Nama, Z. Qu, A.A. Nawaz, T.J. Huang, Anal. Chem. 86(10), 5083–5088 (2014)

    Article  Google Scholar 

  • F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, T. Laurell, Anal. Chem. 79(14), 5117–5123 (2007)

    Article  Google Scholar 

  • S. Radel, A.J. McLoughlin, L. Gherardini, O. Doblhoff-Dier, E. Benes, Ultrasonics 38(1–8), 633–637 (2000)

    Article  Google Scholar 

  • M. Settnes, H. Bruus, Physical Review E 85(1), 016327 (2012)

  • B. Song, W. Zhang, X. Bai, L. Feng, D. Zhang, F. Arai (2020). A novel portable cell sonoporation device based on open-source acoustofluidics. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA.

  • M.K. Tan, J.R. Friend, L.Y. Yeo, Lab Chip 7(5), 618–625 (2007)

    Article  Google Scholar 

  • M.K. Tan, L.Y. Yeo, J.R. Friend, Europhys. Lett. 87(4), 47003 (2009)

    Article  Google Scholar 

  • F.J. Trujillo, P. Juliano, G. Barbosa-Cánovasc, K. Knoerzer, Ultrason. Sonochem. 21(6), 2151–2164 (2014)

    Article  Google Scholar 

  • Z. Wang, P.-H. Huang, C. Chen, H. Bachman, S. Zhao, S. Yang, T.J. Huang, Lab on a Chip 19(24) (2019)

  • M. Wu, P.-H. Huang, R. Zhang, Z. Mao, C. Chen, G. Kemeny, P. Li, A.V. Lee, R. Gyanchandani, A.J. Armstrong, M. Dao, S. Suresh, T.J. Huang, Small 14(32), 1801131 (2018)

    Article  Google Scholar 

  • C. Zhang, X. Guo, L. Royon, Physical Review E 102, 043110 (2020)

  • Y. Zhou, The European Physical Journal plus 135, 696 (2020)

    Article  Google Scholar 

  • E. Zwaan, S. le Gac, K. Tsuji, C.D. Ohl, Physical Review Letters 98(25), 254501 (2007)

Download references

Acknowledgements

This work was supported by the Academic Research Fund (AcRF Tier 1, RG47/18), Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

The study conception, design, and modeling were performed by YZ, and the draft of the manuscript was written by YZ.

Corresponding author

Correspondence to Yufeng Zhou.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation. Biomed Microdevices 24, 7 (2022). https://doi.org/10.1007/s10544-021-00608-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00608-6

Keywords

Navigation