Log in

Aharonov-Bohm effect in graphene Möbius strips: an analytical treatment

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, the influence of an Aharonov-Bohm flux on the low energy physical properties of graphene nanorings exhibiting Möbius topology is examined. Our approach lies in the continuum description of graphene, providing an analytical treatment for Aharonov-Bohm problem in the context of general relativistic confined systems, whose main goal is to understand the role of boundary conditions and their effects in such a background. We study a class of quantum rings described by a particular set of boundary conditions which combines infinite mass confinement along the transverse direction with a Möbius-type periodicity longitudinally, in order to sketch out insights into the electronic behavior of typical hard wall nanoribbons within a relativistic domain in response to the interplay between non-trivial topology and quantum interference effects. Boundary conditions are found to be only partially compatible, leading to spatial constraints on the solution, which also manifests itself in the nature of energy spectrum and persistent currents. Expressions for flux-dependent energy eigenvalues and persistent currents are explicitly calculated, as well as comparative graphs are plotted and analyzed. Both quantities are shown to alternate their expressions not only in dependence on the transverse modes, but also showing sensitivity to the allowed positions of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  4. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev. B 77, 085413 (2008)

    Article  ADS  Google Scholar 

  5. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, T. Ihn, Phys. Status Solidi B 246, 11 (2009)

    Article  Google Scholar 

  6. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, K. Ensslin, T. Ihn, New J. Phys. 12, 043054-1 (2009)

    Article  Google Scholar 

  7. P. Recher, B. Trauzettel, A. Rycerz, Ya.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  8. J. Wurm, M. Wimmer, H.U. Baranger, K. Richter, Semicond. Sci. Technol. 25, 034003 (2010)

    Article  ADS  Google Scholar 

  9. A. Rycerz, C.W.J. Beenakker, ar**v:0709.3397v1 (2007)

  10. D.A. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)

    Article  ADS  Google Scholar 

  11. M.M. Ma, J.W. Ding, N. Xu, Nanoscale 1, 387 (2009)

    Article  ADS  Google Scholar 

  12. V.H. Nguyen, Y.M. Niquet, P. Dollfus, Phys. Rev. B 88, 035408 (2013)

    Article  ADS  Google Scholar 

  13. C.-H. Yan, L.-F. Wei, J. Phys.: Condens. Matter 22, 295503 (2010)

    Google Scholar 

  14. B.-L. Huang, M.-C. Chang, C.-Y. Mou, J. Phys.: Condens. Matter 24, 245304 (2012)

    ADS  Google Scholar 

  15. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatakenaka, Nature 417, 397 (2002)

    Article  Google Scholar 

  17. E.W.S. Caetano, V.N. Freire, S.G. dos Santos, D.S. Galvo, J. Chem. Phys. 128, 164719 (2008)

    Article  ADS  Google Scholar 

  18. E.W.S. Caetano, V.N. Freire, S.G. dos Santos, E.L. Albuquerque, D.S. Galvo, F. Sato, Langmuir 25, 4751 (2009)

    Article  Google Scholar 

  19. D. Jiang, S. Dai, J. Phys. Chem. C 112, 5348 (2008)

    Article  Google Scholar 

  20. Z.L. Guo, Z.R. Gong, H. Dong, C.P. Sun, Phys. Rev. B 80, 195310 (2009)

    Article  ADS  Google Scholar 

  21. X. Wang, X. Zheng, M. Ni, L. Zou, Z. Zeng, Appl. Phys. Lett. 97, 123103 (2010)

    Article  ADS  Google Scholar 

  22. T. Korhonen, P. Koskinen, Comp. Mater. Sci. 81, 264 (2014)

    Article  Google Scholar 

  23. J.F.O. de Souza, C. Furtado, Int. J. Mod. Phys. B 30, 1650224 (2016)

    Article  ADS  Google Scholar 

  24. K. Yakubo, Y. Avishai, D. Cohen, Phys. Rev. B 67, 125319 (2003)

    Article  ADS  Google Scholar 

  25. K. Wakabayashi, K. Harigaya, J. Phys. Soc. Jpn 72, 998 (2003)

    Article  ADS  Google Scholar 

  26. E.H. Martins Ferreira, M.C. Nemes, M.D. Sampaio, H.A. Weidenmöller, Phys. Lett. A 333, 146 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  27. E.L. Starostin, G.H.M. van der Heijden, Nat. Mater. 6, 563 (2007)

    Article  Google Scholar 

  28. N. Zhao, H. Dong, S. Yang, C.P. Sun, Phys. Rev. B 79, 125440 (2009)

    Article  ADS  Google Scholar 

  29. I.I. Cotaescu, E. Papp, J. Phys.: Condens. Matter 19, 242206 (2007)

    ADS  Google Scholar 

  30. S. Ghosh, Adv. Condens. Matter Phys. 2013, 592402 (2013)

    Article  Google Scholar 

  31. W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, 2000), 3rd edn.

  32. M.V. Berry, R.J. Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987)

    Article  ADS  Google Scholar 

  33. N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys. Rev. B 73, 241403 (2006)

    Article  ADS  Google Scholar 

  34. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  35. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78, 10 (1997)

    Article  Google Scholar 

  36. T. Ando, J. Phys. Soc. Jpn 74, 3 (2005)

    Article  Google Scholar 

  37. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, 1997)

  38. P. Alberto, C. Fiolhais, V.M.S. Gil, Eur. J. Phys. 17, 19 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Furtado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira de Souza, J.F., de Lima Ribeiro, C.A. & Furtado, C. Aharonov-Bohm effect in graphene Möbius strips: an analytical treatment. Eur. Phys. J. B 90, 98 (2017). https://doi.org/10.1140/epjb/e2017-70719-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70719-2

Keywords

Navigation