Log in

Electronic properties of graphene quantum ring with wedge disclination

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the energy spectrum and persistent current of charge carriers confined in a graphene quantum ring geometry of radius R and width w subject to a magnetic flux. We consider the case where the crystal symmetry is locally modified through dislocations created by replacing the original carbon hexagon by a pentagon, square, heptagon or octagon. To model this type of defect, we include appropriate boundary conditions for the angular coordinate. The electrons are then confined to a finite width strip in the radial direction by setting an infinite mass boundary conditions at the edges of the strip. The solutions are expressed in terms of Hankel functions and their asymptotic behavior allows to derive quantized energy levels in the presence of an energy gap. We also investigate the persistent currents that appear in the quantum ring in the presence of a quantum flux at the center of the ring and how wedge disclination influences different quantum transport quantities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available on request from the corresponding author].

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  4. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Nano Lett. 8, 17048 (2008)

    Article  Google Scholar 

  5. Xuan Wang, Linjie Zhi, K. Mullen, Nano Lett. 8, 323 (2008)

  6. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  7. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev. B 77, 085413 (2008)

    Article  ADS  Google Scholar 

  8. P. Recher, B. Trauzettel, A. Rycerz, Ya M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  9. D.A. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)

    Article  ADS  Google Scholar 

  10. M. Zarenia, J.M. Pereira Jr., F.M. Peeters, G.A. Farias, Nano Lett. 9, 4088 (2009)

    Article  ADS  Google Scholar 

  11. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science 320, 356 (2008)

    Article  ADS  Google Scholar 

  12. P.G. Silvestrov, K.B. Efetov, Phys. Rev. Lett. 98, 016802 (2007)

    Article  ADS  Google Scholar 

  13. S. Schnez, K. Ensslin, M. Sigrist, T. Ihn, Phys. Rev. B 78, 195427 (2008)

    Article  ADS  Google Scholar 

  14. A. Belouad, Z. Youness, A. Jellal, Mater. Res. Express 3, 055005 (2016)

    Article  ADS  Google Scholar 

  15. M.D. Petrović, F.M. Peeters, A. Chaves, G.A. Farias, J. Phys. Condens. Matter 25, 495301 (2013)

    Article  Google Scholar 

  16. D.R. da Costa, A. Chaves, M. Zarenia, J.M. Pereira Jr., G.A. Farias, F.M. Peeters, Phys. Rev. B 89, 075418 (2014)

    Article  ADS  Google Scholar 

  17. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature (London) 430, 870 (2004)

    Article  ADS  Google Scholar 

  18. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, PhN First, J.A. Stroscio, Science 324, 924 (2009)

    Article  ADS  Google Scholar 

  19. E. Loginova, S. Nie, K. Thurmer, N.C. Bartelt, K.F. McCarty, Phys. Rev. B 80, 085430 (2009)

    Article  ADS  Google Scholar 

  20. H. J. Park, J. Meyer, S. Roth, and V. Skkalov, Carbon 48, 1088 (2010)

  21. Cludio Furtado, Bruno G. C. da Cunhaa, Fernando Moraesa, E. R. Bezerra de Mello, and V. B. Bezzerrab, Phys. Lett. A 195, 90 (1994)

  22. M. Vozmediano, M. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Article  ADS  Google Scholar 

  24. A. Rüegg, Ch. Lin, Phys. Rev. Lett. 110, 046401 (2013)

    Article  ADS  Google Scholar 

  25. M. Bttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983)

  26. L. P. Lvy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990)

  27. V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J. Gallagher, A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991)

    Article  ADS  Google Scholar 

  28. Hlne Bouchiat, New clues in the mystery of persistent currents, Physics 1, 7 (2008) and references therein

  29. D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993)

    Article  ADS  Google Scholar 

  30. R. Deblock, R. Bel, B. Reulet, V. Bouchiat, D. Mailly, Phys. Rev. Lett. 89, 206803 (2002)

    Article  ADS  Google Scholar 

  31. J. Schelter, D. Bohr, B. Trauzettel, Phys. Rev. B 81, 195441 (2010)

    Article  ADS  Google Scholar 

  32. M.M. Ma, I.W. Ding, Solid State Communications 150, 1196 (2010)

    Article  ADS  Google Scholar 

  33. Paramita Dutta, Santanu K. Maiti, and S. N. Karmakar, Eur. Phys. J. B 85, 126 (2012)

  34. Bor-Luen Huang, Ming-Che Chang, Chung-Yu. Mou, J. Phys.: Condens. Matter 24, 245304 (2012)

    ADS  Google Scholar 

  35. Janine Splettstoesser, Michele Governale, and Ulrich Zlicke Phys. Rev. B 68, 165341 (2003)

  36. L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Phys. Rev. Lett. 88, 217206 (2002)

    Article  ADS  Google Scholar 

  37. D. Sinha, B. Berche, Eur. Phys. J. B 89, 57 (2016)

    Article  ADS  Google Scholar 

  38. M. Zarenia, J. Milton Pereira, A. Chaves, F. M. Peeters, and G. A. Farias, Phy. Rev. B 81, 045431 (2010)

Download references

Acknowledgements

The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by AJ. AJ and HB acknowledge the support of KFUPM under research group project RG181001. HB also acknowledges discussions with Michael Vogl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belouad, A., Jellal, A. & Bahlouli, H. Electronic properties of graphene quantum ring with wedge disclination. Eur. Phys. J. B 94, 75 (2021). https://doi.org/10.1140/epjb/s10051-021-00072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00072-4

Navigation