Log in

The electrical conductance growth of a metallic granular packing

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report on measurements of the electrical conductivity on a two-dimensional packing of metallic disks when a stable current of ~1 mA flows through the system. At low applied currents, the conductance σ is found to increase by a pattern σ(t) = σ Δσ E α [ − (t/τ)α ], where E α denotes the Mittag-Leffler function of order α ∈ (0,1). By changing the inclination angle θ of the granular bed from horizontal, we have studied the impact of the effective gravitational acceleration g eff = gsinθ on the relaxation features of the conductance σ(t). The characteristic timescale τ is found to grow when effective gravity g eff decreases. By changing both the distance between the electrodes and the number of grains in the packing, we have shown that the long term resistance decay observed in the experiment is related to local micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow both creation and breakdown of micro-contacts between two disks, we present an approach to granular conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way, the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the interface switch stochastically between two possible states, “on” and “off”, characterizing the conductivity of the micro-contact. We assume that the time intervals between the consecutive changes of state are governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described by an exact fractional kinetic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Holm, Electric Contacts: Theory and Applications, 4th edn. (Springer-Verlag, Berlin/Heidelberg, 1967)

  2. V. Da Costa, Y. Henry, F. Bardou, M. Romeo, K. Ounadjela, Eur. Phys. J. B 13, 297 (2000)

    Article  ADS  Google Scholar 

  3. B.F. Toler, R.A. Coutu Jr., J.W. McBride, J. Micromech. Microeng. 23, 103001 (2013)

    Article  ADS  Google Scholar 

  4. E. Branly, C. R. Acad. Sci. 280, 785 (1890)

    Google Scholar 

  5. S. Dorbolo, M. Ausloos, N. Vandewalle, Phys. Rev. E 67, 040302 (2003)

    Article  ADS  Google Scholar 

  6. E. Falcon, B. Castaing, C. Laroche, Europhys. Lett. 65, 186 (2004)

    Article  ADS  Google Scholar 

  7. E. Falcon, B. Castaing, Am. J. Phys. 73, 302 (2005)

    Article  ADS  Google Scholar 

  8. S. Dorbolo, N. Vandewalle, Traffic Granul. Flow 5, 521 (2005)

    Google Scholar 

  9. P. Bèquin, V. Tourant, Granul. Matter 12, 375 (2010)

    Article  Google Scholar 

  10. M. Creyssels, S. Dorbolo, A. Merlen, C. Laroche, B. Castaing, E. Falcon, Eur. Phys. J. E 23, 255 (2007)

    Article  Google Scholar 

  11. E. Falcon, B. Castaing, M. Creyssels, Eur. Phys. J. B 38, 475 (2004)

    Article  ADS  Google Scholar 

  12. N. Vandewalle, C. Lenaerts, S. Dorbolo, Europhys. Lett. 53, 197 (2001)

    Article  ADS  Google Scholar 

  13. D. Bonamy, L. Laurent, Ph. Claudin, J.-Ph. Bouchaud, Europhys. Lett. 51, 614 (2000)

    Article  ADS  Google Scholar 

  14. S. Dorbolo, M. Ausloos, N. Vandewalle, M. Houssab, J. Appl. Phys. 94, 7835 (2003)

    Article  ADS  Google Scholar 

  15. J.J. Lee, C.W. Lee, I. Yu, Y.K. Jung, J. Lee, J. Phys.: Condens. Matter 19, 356202 (2007)

    ADS  Google Scholar 

  16. R. Hilfer, J. Non-Cryst. Solids 305, 122 (2002)

    Article  ADS  Google Scholar 

  17. M.M. Meerschaert, H.-P. Scheffler, J. Appl. Probab. 41, 623 (2004)

    Article  MathSciNet  Google Scholar 

  18. A.A. Stanislavsky, Phys. Rev. E 61, 4752 (2000)

    Article  ADS  Google Scholar 

  19. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  20. G.M. Zaslavsky, Phys. Rep. 371, 461 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Aste, J. Phys.: Condens. Matter 17, S2361 (2005)

    ADS  Google Scholar 

  22. E.W. Weisstein, Mittag-Leffler function, From MathWorld − A Wolfram Web Resource (2017), http://mathworld.wolfram.com/Mittag-LefflerFunction.html

  23. D. Howell, R.P. Behringer, C. Veje, Phys. Rev. Lett. 82, 5241 (1999)

    Article  ADS  Google Scholar 

  24. M. Muthuswamy, A. Tordesillas, in Proceedings of the 10th ASCE Aerospace Division International Conference on Engineereng, Construction and Operations in Challenging Environments (Earth & Space 2006), edited by R.B. Malla, W.K. Binienda, A.K. Maji (Aerospace Division of the American Society of Civil Engineers, Reston, VA, 2006), p. 33

  25. M. Muthuswamy, A. Tordesillas, JSTAT P09003 (2006)

  26. A. Modaressi, S. Boufellouh, P. Evesque, Chaos 9, 523 (1999)

    Article  ADS  Google Scholar 

  27. Z.M. Jakšić, J.R. Šćepanović, I. Lončarević, Lj. Budinski-Petković, S.B. Vrhovac, A. Belić, Phys. Rev. E 90, 062208 (2014)

    Article  ADS  Google Scholar 

  28. A. Janicki, A. Weron, Stat. Sci. 9, 109 (1994)

    Article  Google Scholar 

  29. M. Magdziarz, K. Weron, Physica A 367, 1 (2006)

    Article  ADS  Google Scholar 

  30. F. Mainardi, Chaos Solitons Fract. 7, 1461 (1996)

    Article  ADS  Google Scholar 

  31. A.A. Stanislavsky, Phys. Rev. E 67, 021111 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. A.A. Stanislavsky, Chaos Solitons Fract. 34, 51 (2007), in Search of a Theory of Complexity

    Article  ADS  MathSciNet  Google Scholar 

  33. Aleksander Stanislavsky, Karina Weron, Aleksander Weron, Commun. Nonlinear Sci. Numer. Simul. 24, 117 (2015)

    Article  ADS  Google Scholar 

  34. A.A. Stanislavsky, Acta Phys. Polonica B 34, 3649 (2003)

    ADS  Google Scholar 

  35. F. Mainardi, R. Gorenflo, J. Comput. Appl. Math. 118, 283 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. R.K. Saxena, A.M. Mathai, H.J. Haubold, Physica A 344, 657 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Hilfer, L. Anton, Phys. Rev. E 51, R848 (1995)

    Article  ADS  Google Scholar 

  38. T.J. Kozubowski, S.T. Rachev, J. Comput. Anal. Appl. 1, 177 (1999)

    MathSciNet  Google Scholar 

  39. D. Fulger, E. Scalas, G. Germano, Phys. Rev. E 77, 021122 (2008)

    Article  ADS  Google Scholar 

  40. E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, P. Hänggi, Phys. Rev. E 73, 046133 (2006)

    Article  ADS  Google Scholar 

  41. E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, J. Phys.: Condens. Matter 19, 065114 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobodan B. Vrhovac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakšić, Z.M., Cvetković, M., Šćepanović, J.R. et al. The electrical conductance growth of a metallic granular packing. Eur. Phys. J. B 90, 108 (2017). https://doi.org/10.1140/epjb/e2017-70597-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70597-6

Keywords

Navigation