Log in

Experimental and numerical investigation of the compression and expansion of a granular bed of repelling magnetic disks

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We studied experimentally and numerically the compaction and subsequent expansion dynamics of a granular bed composed of cylindrical repelling magnets contained in a two-dimensional cell. The particles are firstly compressed vertically with a piston at a given strain rate until a maximum force is reached. The piston is then removed at the same strain rate while the bed expands due to the magnetic repulsion of the particles. In the experiments, two different initial configurations were generated, a standard and a loose packing bed. The standard packing bed was simulated, and modelling the dry friction between the magnetic particles and the walls of the cell was crucial for the correct description of the compression and expansion dynamics. We found that the force acting on the piston increases continuously and exponentially with the piston stroke during compression, being very sensitive to the initial packing conditions of the bed. In contrast, a history-independent exponential decrease of this force was found during the expansion phase. The hysteresis in the system was quantified in terms of the average displacement of the particles. The continuous compression contrasts with the sudden force drops observed during the compaction of granular materials with direct particle-particle contacts, where stick-slip motion is induced by friction and force chain breakage. Moreover, we found that the short range of magnetic interaction induces density inversion and crystallization of the system. Our results can be useful to develop a new kind of magnetic granular dampers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brujic, J., Wang, P., Song, C., Johnson, D., Sindt, O., Maske, H.A.: Granular dynamics in compaction and stress relaxation. PRL 95, 120081 (2005)

    Article  Google Scholar 

  2. Pacheco-Vázquez, F., Omura, T., Katsuragi, H.: Undulating compression and multistage relaxation in a granular column consisting of dust particles or glass beads. Phys. Rev. Res. 3, 013190 (2021). https://doi.org/10.1103/PhysRevResearch.3.013190

    Article  Google Scholar 

  3. Pacheco-Vázquez, F., Omura, T., Katsuragi, H.: Grain size effect on the compression and relaxation of a granular column: solid particles vs dust agglomerates. E. J. Web Conf. 249, 871 (2021)

    Google Scholar 

  4. Barraclough, T.W., Blackford, J.R., Liebenstein, S., Sandfeld, S., Stratford, T.J., Weinländer, G., Zaiser, M.: Propagating compaction bands in confined compression of snow. Nat. Phys. 13(3), 272–275 (2016)

    Article  Google Scholar 

  5. Chen, X., Roshan, H., Lv, A., Hu, M., Regenauer-Lieb, K.: The dynamic evolution of compaction bands in highly porous carbonates: the role of local heterogeneity for nucleation and propagation. Progr. Earth Planetary Sci. 7(1), 28 (2020)

    Article  ADS  Google Scholar 

  6. Valdès, J.R., Fernandes, F.L., Einav, I.: Periodic propagation of localized compaction in a brittle granular material. Granular Matter 14(1), 71–76 (2011)

    Article  Google Scholar 

  7. Guillard, F., Golshan, P., Shen, L., Valdès, J.R., Einav, I.: Dynamic patterns of compaction in brittle porous media. Nat. Phys. 11(10), 835–838 (2015)

    Article  Google Scholar 

  8. Mesri, G., Vardhanabhuti, B.: Compression of granular materials. Can. Geotech. J. 46, 984 (2009)

    Article  Google Scholar 

  9. Lumay, G., Dorbolo, S., Pacheco-Vázquez, F.: Flow of magnetic repelling grains in a two-dimensional silo. Papers Phys. 7, 070013 (2015)

    Article  Google Scholar 

  10. Hernández-Enríquez, D., Lumay, G., Pacheco-Vázquez, F.: Discharge of repulsive grains: experiments and simulations. EPJ Web Conf. 140, 03089 (2017)

    Article  Google Scholar 

  11. Escobar-Ortega, Y.Y., Hidalco-Caballero, S., Marston, J.O., Pacheco-Vázquez, F.: The viscoelastic-like response of a repulsive granular medium during projectile impact and penetration. J. Non-Newtonian Fluid Mech. 280, 104295 (2020)

    Article  Google Scholar 

  12. http://www.imanes.com.mx/jalisco/ver Producto.php?mod=ND6X2

  13. Veje, C.T., Howell, D.W., Behringer, R.P.: Kinematics of a two-dimensional granular couette experiment at the transition to shearing. Phys. Rev. E 59, 739–745 (1999). https://doi.org/10.1103/PhysRevE.59.739

    Article  ADS  Google Scholar 

  14. Iikawa, N., Bandi, M.M., Katsuragi, H.: Force-chain evolution in a two-dimensional granular packing compacted by vertical tap**s. Phys. Rev. E 97, 032901 (2018). https://doi.org/10.1103/PhysRevE.97.032901

    Article  ADS  Google Scholar 

  15. Rothen, F., Pieranski, P., Rivier, N., Joyet, A.: Conformal crystal. Eur. J. Phys. 14(5), 227–233 (1993). https://doi.org/10.1088/0143-0807/14/5/007

    Article  Google Scholar 

  16. Rothen, F., Pieranski, P.: Mechanical equilibrium of conformal crystals. Phys. Rev. E 53, 2828–2842 (1996). https://doi.org/10.1103/PhysRevE.53.2828

    Article  ADS  Google Scholar 

  17. Modesto, J.A.C., Cunha, F.R., Sobral, Y.D.: Aggregation patterns in systems composed of few magnetic particles. J. Mag. Magn. Mat. 512, 166664 (2020). https://doi.org/10.1016/j.jmmm.2020.166664

    Article  Google Scholar 

  18. Vandewalle, N., Wafflard, A.: Ground state of magnetocrystals. Phys. Rev. E 103, 58 (2021)

    Article  Google Scholar 

  19. Quinn, D.D.: A new regularization of coulomb friction. J. Vib. Acous. 126, 391–397 (2004)

    Article  Google Scholar 

  20. Pennestrì, E., Rossi, V., Salvini, P., Valentin, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83, 1785–1801 (2016)

    Article  MATH  Google Scholar 

  21. Dorbolo, S., Ludewig, F., Vandewalle, N., Laroche, C.: How does an ice block assembly melt? Phys. Rev. E 85, 051310 (2012). https://doi.org/10.1103/PhysRevE.85.051310

    Article  ADS  Google Scholar 

  22. Sánchez, M., Rosenthal, G., Pugnaloni, L.A.: Universal response of optimal granular dam** devices. J. Sound Vibr. 331(20), 4389–4394 (2012). https://doi.org/10.1016/j.jsv.2012.05.001

    Article  ADS  Google Scholar 

  23. Ferreyra, M.V., Baldini, M., Pugnaloni, L.A., Job, S.: Effect of lateral confinement on the apparent mass of granular dampers. Granular Matter 23(2), 45 (2021). https://doi.org/10.1007/s10035-021-01090-w

    Article  Google Scholar 

  24. Heckel, M., Sack, A., Kollmer, J.E., Pöeschel, T.: Granular dampers for the reduction of vibrations of an oscillatory saw. Phys. A: Stat. Mech. Appl. 391(19), 4442–4447 (2012). https://doi.org/10.1016/j.physa.2012.04.007

    Article  Google Scholar 

  25. Pacheco-Vázquez, F., Dorbolo, S.: Rebound of a confined granular material: combination of a bouncing ball and a granular damper. Scientif. Rep. 3(1), 2158 (2013). https://doi.org/10.1038/srep02158

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Julien Schockmel and Geoffroy Lumay for their help with the initial experiments and discussions, and Prof. Nicolas Vandewalle for the use of GRASP facilities. SD thanks F.R.S.-FNRS for financial support as a Senior Research Associate.

Author information

Authors and Affiliations

Authors

Contributions

Design and experiments: S.D. and F.P.V. Numerical simulations: J.A.C.M. and Y.D.S. Analysis and discussion: J.A.C.M., S.D., H.K., F.P.V. and Y.D.S., The initial draft was written by F. Pacheco-Vázquez and Y. Dumaresq Sobral, and all authors revised, discussed and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to F. Pacheco-Vázquez or Y. D. Sobral.

Ethics declarations

Funding

Research supported by CONACYT Mexico through Frontier Science Project 140604 FORDECYT-PRONACES, VIEP-BUAP 2021-2022, FNRS Belgium and FAP-DF Brazil Project 00193.00001155/2021-40.

Conflict of interest

the authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 6598 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modesto, J.A.C., Dorbolo, S., Katsuragi, H. et al. Experimental and numerical investigation of the compression and expansion of a granular bed of repelling magnetic disks. Granular Matter 24, 105 (2022). https://doi.org/10.1007/s10035-022-01268-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01268-w

Keywords

Navigation