Log in

Production of Spherical Boron-Carbide Particles Encapsulated in a Graphite Shell

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Laser ablation makes it possible to obtain boron-carbide nanoparticles suitable for subsequent use in boron neutron capture therapy. However, particles of boron and boric acid are formed in parallel. Boric acid is harmful to the human body, and boron can naturally form boric acid. A method is proposed for reducing the toxicity of the synthesis of boron-carbide nanoparticles by laser ablation by adding free carbon to the reaction and replacing the traditionally used buffer medium, ethyl acetate. Purified water is used as a dispersing medium. It is shown that the described technology has prospects for reducing the level of toxicity due to the choice of a suitable buffer medium. The formation of boron carbide is recorded by transmission electron microscopy and XRD analysis. The formed particles are predominantly spherical in shape and have a carbon shell. A mechanism is proposed for the formation of such a shell due to the diffusion of carbon from the bulk of the particle through the domain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Thevenot, J. Eur. Ceram. Soc. 6, 205 (1990).

    Article  CAS  Google Scholar 

  2. M. W. Chen, J. W. McCauley, and K. J. Hemker, Science (Washington, DC, U. S.) 299, 1563 (2003).

    Article  CAS  Google Scholar 

  3. D. Ghosh, G. Subhash, T. S. Sudarshan, et al., J. Am. Ceram. Soc. 90, 1850 (2007).

    Article  CAS  Google Scholar 

  4. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011).

    Article  CAS  Google Scholar 

  5. K. M. Reddy, J. J. Gua, Y. Shinoda, et al., Nat. Commun. 3, 1052 (2012).

    Article  Google Scholar 

  6. K. M. Reddy, P. Liu, A. Hirata, et al., Nat. Commun. 4, 2483 (2013).

    Article  Google Scholar 

  7. R. J. Brook, Concise Encyclopedia of Advanced Ceramic Materials (Pergamon, New York, 1991).

    Google Scholar 

  8. K. H. G. Ashbee, Acta Metall. 19, 1079 (1971).

    Article  CAS  Google Scholar 

  9. H. Bai, N. Ma, J. Lang, et al., Mater. Des. 46, 740 (2015).

    Article  Google Scholar 

  10. S. Sankaranarayanan, R. K. Sabat, S. Jayalakshmi, et al., Mater. Des. 56, 428 (2014).

    Article  CAS  Google Scholar 

  11. R. F. Barth, A. H. Soloway, and R. G. Fairchild, Am. J. Sci. 263, 100 (1990).

    Article  CAS  Google Scholar 

  12. M. W. Mortensen, P. G. Sorensen, O. Björkdahl, et al., Appl. Rad. Isot. 64, 315 (2006).

    Article  CAS  Google Scholar 

  13. Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizak, Appl. Phys. Lett. 91, 161110 (2007).

    Article  Google Scholar 

  14. E. Siegel and S. Wason, J. Pediatr. Clin. North Am. 33, 363 (1986).

    Article  CAS  Google Scholar 

  15. A. Sinha, T. Mahata, and B. P. Sharma, J. Nucl. Mater. 301, 165 (2002).

    Article  CAS  Google Scholar 

  16. G. L. Messing, K. S. Mazdiyasni, J. W. McCauley, et al., Ceramic Powder Science, Advances in Ceramics (Am. Ceram. Soc., Uetikon, Zurich, 1987).

  17. M. T. Spohn, Am. Ceram. Soc. Bull. 72, 88 (1993).

    CAS  Google Scholar 

  18. C. Ganguly, S. K. Roy, and P. R. Roy, Advanced Ceramics, Key Engineering Materials (TransTech, Ohio, 1991).

  19. J. J. Scott, US Patent No. 3161471 (1964).

  20. L. Shi, Y. L. Gu, L. Y. Chen, et al., Solid State Commun. 128, 5 (2003).

    Article  CAS  Google Scholar 

  21. S. Chen, D. Z. Wang, J. Y. Huang, et al., Appl. Phys. A 79, 1757 (2004).

    Article  CAS  Google Scholar 

  22. X. Y. B. Munge, V. Patel, G. Jensen, et al., J. Am. Chem. Soc. 128, 11199 (2006).

    Article  Google Scholar 

  23. Y. Ishikawa, Q. Feng, and N. Koshizaki, Appl. Phys. A 99, 797 (2010).

    Article  CAS  Google Scholar 

  24. E. V. Barmina, I. N. Zavestovskaya, A. I. Kasatova, et al., ar**v: 2109.03608.

  25. V. V. Voronov, P. V. Kazakevich, A. V. Simakin, et al., JETP Lett. 80, 684 (2004).

    Article  CAS  Google Scholar 

  26. M. Beauvy, J. Less-Comon. Met. 90, 169 (1983).

    CAS  Google Scholar 

  27. U. Hofmann and D. Wilm, J. Zeitschr. Elektr. 42, 504 (1936).

    CAS  Google Scholar 

  28. H. K. Clark and J. L. Hoard, J. Am. Chem. Soc. 65, 2115 (1943).

    Article  CAS  Google Scholar 

  29. W. H. Zachariasen, Acta Crystallogr. 7, 305 (1954).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.G. Ivanova for help in carrying out the powder X-ray diffraction experiments.

Funding

This work was supported by a grant from the President of the Russian Federation MD-3790.2021.1.2. Research by P.V. Zinin was supported by the Ministry of Science and Higher Education of the Russian Federation (FFNS-2022-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Pavlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, I.S., Barmina, E.V., Zhilnikova, M.I. et al. Production of Spherical Boron-Carbide Particles Encapsulated in a Graphite Shell. Nanotechnol Russia 17, 290–296 (2022). https://doi.org/10.1134/S2635167622030132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622030132

Navigation