Log in

First-Principles Study on Properties of the Native Defects in Al2O3(110) Surface

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Using the CASTEP module in Materials Studio software, the native defect model structures including O vacancy and Al vacancy in Al2O3(110) surface were designed and constructed. Through first-principles based on density functional theory (DFT) and pseudo potential method, the Al2O3(110) model structures were optimized. Formation energy, energy state structure, electric density and electron population of defect structures and primitive cell were calculation. Effect of O vacancy and Al vacancy on Al2O3 properties could be analyzed and probed. The results showed that formation energy of O vacancy is only 0.06 eV, which is significantly less than that of Al vacancy (2.99 eV). This indicates that the formation of O vacancy is more easily to produce. O vacancy defects reduce electronic energy in Al2O3(110), and make its conductivity become poorer. The impact of Al vacancy defects on conductivity are opposite. The influence of aluminum vacancy defects on electron density in Al2O3(110) is more than that of oxygen vacancy; oxygen vacancy increases the electronegativity around O atoms, and weakens electropositivity around Al atoms the electricity, which makes the top of energy band structure move down. The calculation results provide a theoretical guidance for the formation of functional anodic oxidation films of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Cui, X., Wu, Y., Liu, X., Zhao, Q., and Zhang, G., Mater. Des., 2015, vol. 86, p. 397.

    Article  Google Scholar 

  2. Armelin, E., Whelan, R., Martínez-Triana, Y.M., Alemán, C., Finn, M.G., and Díaz, D.D., ACS Appl. Mater. Interfaces, 2017, vol. 9. p. 4231.

    Article  Google Scholar 

  3. Saleema, N., Sarkar, D.K., Gallant, D., Paynter, R.W., and Chen, X.G., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4775.

    Article  Google Scholar 

  4. Cui, X., Wu, Y., Zhang, G., Liu, Y., and Liu, X., Composites, Part B, 2017, vol. 110, p. 381,

    Article  Google Scholar 

  5. Shin, J.S., Ko, S.H., and Kim, K.T., J. Alloys Compd., 2015, vol. 644, p. 673.

    Article  Google Scholar 

  6. Ji, Y., Wang, F, Gu, Z., and Gong, X., Chemistry, 2014, vol. 77, p. 236.

    Google Scholar 

  7. Ebrahimi, S., Ghafoori-Tabrizi, K., and Rafii-Tabar, H., Comput. Mater. Sci., 2013, vol. 71, p. 172.

    Article  Google Scholar 

  8. Zhang, S., Liu, F., and Cheng, X., J. Yibin Univ., 2011, vol. 11, p. 77.

    Google Scholar 

  9. Wang, Y., Zhang, X., Zhao, L., Zhao, X., Shi, B., and Fan, C., Chem. J. Chin. Univ., 2014, vol. 35, p. 2624.

    Google Scholar 

  10. Du, Y., Chang, B., and Wang, H., Chin. Opt. Lett., 2012, vol. 10, p. 39.

    Google Scholar 

  11. Feng, Q., Wang, X., and Liu, G., J. At. Mol. Phys. (Chengdu, China), 2008, vol. 25, p. 1096.

    Google Scholar 

  12. Ma, X., Jiang, J., and Liang, P., Acta Phys. Sin., 2008, vol. 57, p. 3120.

    Google Scholar 

  13. Liu, B., Ma, Y., and Zhou, Y., Acta Phys. Sin., 2010, vol. 59, p. 3577.

    Google Scholar 

  14. Hine, N.D.M., Frensch, K., Foulkes, W.M.C., and Finnis, M.W., Phys. Rev. B, 2009, vol. 79, p. 1.

    Article  Google Scholar 

  15. Chang, Q., Liu, T., and Ma, C., Sci. China Chem., 2016, vol. 46, p. 394.

    Google Scholar 

  16. **ang, X., Zhang, G., Wang, X., Tang, T., and Shi, Y., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 29134.

    Article  Google Scholar 

  17. Choi, M., Janotti, A., and Van de Walle, C.G., J. Appl. Phys., 2013, vol. 113, p. 044501.

    Article  Google Scholar 

  18. Yang, C., Yu, Y., Li, Y., and Liu, Y., Chin. J. Chem. Phys., 2004, vol. 17, p. 537.

    Google Scholar 

  19. Zhang, W., Xu, Z.P., Wang, H.Y., Chen, F.H., and He, C., Acta Phys. Sin., 2013, vol. 62, p. 243101.

    Google Scholar 

  20. Van de Walle, C.G. and Neugebauer, J., J. Appl. Phys., 2004, vol. 95, p. 3851.

    Article  Google Scholar 

  21. Liu, R., Teng, B.T., Quan, J.L., Lang, J.J., and Luo, M., Acta Phys. -Chim. Sin., 2013, vol. 29, p. 271.

    Article  Google Scholar 

  22. Lou, Z.C., Zhang, G.Y., Liang, T., Li, D., and Zhu, S.L., J. Shenyang Norm. Univ., Nat. Sci. Ed., 2010, vol. 28, p. 189.

    Google Scholar 

Download references

FUNDING

This work is financially supported by the Industry-University-Research Cooperation Project of Jiangsu Province in 2018 (no. BY2018276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Wu, G., Shi, W. et al. First-Principles Study on Properties of the Native Defects in Al2O3(110) Surface. Prot Met Phys Chem Surf 55, 631–636 (2019). https://doi.org/10.1134/S2070205119040300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119040300

Keyword:

Navigation