Log in

Quantum chemical analysis of the mechanism of the participation of C60 fullerene in the radical polymerization of styrene and mma initiated by benzoyl peroxide or azobisisobutyronitrile

  • Chemical Physics of Polymer Materials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The formation of various fullerenyl radicals during the polymerization of methyl methacrylate (MMA) and styrene in the presence of C60 fullerene is studied using the density functional method. It is shown that the interaction of an initiating radical with the fullerene molecule, yielding fullerenyl radical, is less favorable in energy terms than the initiation of the chain, i.e., the interaction of the same radical with a monomer. For radical polymerization of styrene, the termination of polystyrene chains on the fullerene is thermodynamically more probable than the growth of polystyrene chains, with the reactions being equiprobable in the case of MMA polymerization. The addition of monomer molecules to fullerenyl radicals is characterized by an enthalpy of activation exceeding that for conventional free radical chain growth by no more than 1.4 to 2.3 times; the thus formed growth radicals with fullerene molecules incorporated into the backbone polymer feature a reactivity not inferior to conventional polymer growth radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Mansour, Int. J. Polym. Mater. 54, 227 (2005).

    Article  CAS  Google Scholar 

  2. Fullerene Polymers: Synthesis, Properties and Applications, Ed. by N. Martin and F. Giacalone (Wiley-VCH, Weinheim, 2009).

  3. F. Giacalone and N. Martín, Chem. Rev. 106, 5136 (2006).

    Article  CAS  Google Scholar 

  4. W. Yan, S. Seifermann, P. Pierrat, and S. Bräse, Org. Biomol. Chem. 13, 25 (2015).

    Article  CAS  Google Scholar 

  5. S. Mehrotra, A. Nigam, and R. Malhotra, Chem. Commun., 463 (1997).

    Google Scholar 

  6. W. T. Ford, T. H. Mourey, and T. D. Graham, Macromolecules 30, 6422 (1997).

    Article  CAS  Google Scholar 

  7. W. T. Ford, T. Nishioka, S. C. McCleskey, T. H. Mourey, and P. Kahol, Macromolecules 33, 2413 (2000).

    Article  CAS  Google Scholar 

  8. R. Kh. Yumagulova, N. A. Medvedeva, S. I. Kuznetsov, et al., Vestn. KNITU 16 (3), 136 (2013).

    CAS  Google Scholar 

  9. R. Kh. Yumagulova, S. I. Kuznetsov, and S. V. Kolesov, Polymer Sci., Ser. B 50, 168 (2008).

    Article  Google Scholar 

  10. R. Kh. Yumagulova, Yu. N. Biglova, S. I. Kuznetsov, S. V. Kolesov, and Yu. B. Monakov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 50 (6), 62 (2007).

    CAS  Google Scholar 

  11. M. Ohno, S. Shibata, and S. Eguchi, Fullerene Sci. Technol. 3, 29 (1995).

    Article  CAS  Google Scholar 

  12. W. T. Ford, T. Nishioka, F. Qiu, et al., Org. Chem. 64, 6257 (1999).

    Article  CAS  Google Scholar 

  13. W. T. Ford, T. Nishioka, F. Qiu, F. D’Souza, and J.-P. Choi, Org. Chem. 65, 5780 (2000).

    Article  CAS  Google Scholar 

  14. T. Cao and S. E. Webber, Macromolecules 28, 3741 (1995).

    Article  CAS  Google Scholar 

  15. T. Cao and S. E. Webber, Macromolecules 29, 3826 (1996).

    Article  CAS  Google Scholar 

  16. C. E. Bunker, G. E. Lawson, and Y.-P. Sun, Macromolecules 28, 3744 (1995).

    Article  CAS  Google Scholar 

  17. D. Stewart and C. T. Imrie, Chem. Commun., 1383 (1996).

    Google Scholar 

  18. D. N. Laikov and Yu. A. Ustynyuk, Russ. Chem. Bull. 54, 820 (2005).

    Article  CAS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  20. D. Sh. Sabirov and R. G. Bulgakov, Comput. Theor. Chem. 963, 185 (2011).

    Article  CAS  Google Scholar 

  21. D. Sh. Sabirov and R. G. Bulgakov, Chem. Phys. Lett. 506, 52 (2011).

    Article  CAS  Google Scholar 

  22. D. R. Diniakhmetova, A. K. Friesen, and S. V. Kolesov, Int. J. Quantum Chem. 116, 489 (2016).

    Article  CAS  Google Scholar 

  23. J. R. Morton, K. F. Preston, and P. J. Krusic, J. Chem. Soc. Perkin Trans. II, No. 9, 1425 (1992).

    Article  Google Scholar 

  24. D. Sh. Sabirov, R. R. Garipova, and R. G. Bulgakov, J. Phys. Chem. A 117, 13176 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Diniakhmetova.

Additional information

Original Russian Text © D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 5, pp. 75–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniakhmetova, D.R., Friesen, A.K. & Kolesov, S.V. Quantum chemical analysis of the mechanism of the participation of C60 fullerene in the radical polymerization of styrene and mma initiated by benzoyl peroxide or azobisisobutyronitrile. Russ. J. Phys. Chem. B 11, 492–498 (2017). https://doi.org/10.1134/S1990793117030034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117030034

Keywords

Navigation