Log in

Experimental study and kinetic modeling of radical-coordination styrene polymerization with participation of ferrocene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A kinetic model of styrene polymerization with participation of benzoyl peroxide and ferrocene was developed, based on the radical-coordination mechanism. A peculiarity of this mechanism is a parallel functioning of the radical and coordination channels for the macromolecules formation, during the styrene polymerization. The proposed mechanism of the process is confirmed by calculations on the developed kinetic model. This model allows quantitative description of the experimentally determined (1) dependencies of styrene conversion versus the polymerization time, (2) dependencies of number-average and mass-average molar masses of polystyrene versus the styrene conversion, and (3) dependencies of styrene conversion during its polymerization on a polystyrene macroinitiator versus the polymerization time, the macroinitiator obtained by radical-initiated polymerization with participation of ferrocene. The computational experiments were carried out and analyzed to assess the effect of ferrocene concentration and temperature on the process in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Chain termination by disproportionation was not taken into account in the kinetic scheme, since this reaction is not characteristic for styrene polymerization [52].

Abbreviations

[…]:

is a concentration of species

ΔV :

is a change of styrene volume during polymerization

Ad :

is an adduct

AIBN:

is azobisisobutyronitrile

ATRP:

is Atom Transfer Radical Polymerization

BP:

is benzoyl peroxide

calc :

is a value calculated by the kinetic model

cont :

is a contraction coefficient showing the relative difference between the specific volumes of styrene and polystyrene

C :

is a complex of styrene and ferrocene

DFT:

is density functional theory

exp :

is an experimental value

I :

is an initiator

k :

are rate coefficients

M :

is styrene molecule

Mc :

is ferrocene

M n :

is number-average molar mass of polystyrene

M w :

is mass-average molar mass of polystyrene

n,  zm :

are chain polymerization degrees

OMRP:

is Organometallic Mediated Radical Polymerization

RCP:

is radical-coordination polymerization

T :

is a temperature

T g :

is a glass transition temperature

T m :

is a melting point

U :

is a conversion of styrene

V0:

is an initial volume of styrene

References

  1. Bovey FA (1960) Polymer NSR spectroscopy. V. The effect of zinc chloride on the free radical polymerization of methyl methacrylate. J Pol Sci. https://doi.org/10.1002/pol.1960.1204714944

    Article  Google Scholar 

  2. Isobe Y, Nakano T, Okamoto Y (2001) Stereocontrol during the free-radical polymerization of methacrylates with Lewis acids. J Pol Sci. https://doi.org/10.1002/pola.1123

    Article  Google Scholar 

  3. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev. https://doi.org/10.1021/cr9901182

    Article  PubMed  Google Scholar 

  4. Grishin DF (2008) Organometallic compounds as reversible spin scavengers and chain growth regulators in free-radical polymerization processes. Pol Sci. https://doi.org/10.1134/S0965545X08030012

    Article  Google Scholar 

  5. Bisht HS, Chatterjee AK (2001) Living free-radical polymerization – a review. J Macromol Sci. https://doi.org/10.1081/MC-100107774

    Article  Google Scholar 

  6. Zetterlund PB, Kagawa Y, Okubo M (2008) Controlled/living radical polymerization in dispersed systems. Chem Rev. https://doi.org/10.1021/cr800242x

    Article  PubMed  Google Scholar 

  7. Smirnov VR (1990) Reversible inhibition of radical polymerization. Sci USSR. https://doi.org/10.1016/0032-3950(90)90142-S

    Article  Google Scholar 

  8. Allan LEN, Perry MR, Shaver MP (2012) Organometallic mediated radical polymerization. Prog Pol Sci. https://doi.org/10.1016/j.progpolymsci.2011.07.004

    Article  Google Scholar 

  9. Poli R (2015) New phenomena in organometallic-mediated radical polymerization (OMRP) and perspectives for control of less active monomers. Chem – A Eur J. https://doi.org/10.1002/chem.201500015

  10. Debuigne A, Jérôme C, Detrembleur C (2017) Organometallic-mediated radical polymerization of ‘less activated monomers’: fundamentals, challenges and opportunities. Polymer. https://doi.org/10.1016/j.polymer.2017.01.008

    Article  Google Scholar 

  11. Siegwart DJ, Oh JK, Matyjaszewski K (2012) ATRP in the design of functional materials for biomedical applications. Prog Pol Sci. https://doi.org/10.1016/j.progpolymsci.2011.08.001

    Article  Google Scholar 

  12. Poli R, Allan LEN, Shaver MP (2014) Iron-mediated reversible deactivation controlled radical polymerization. Prog Pol Sci. https://doi.org/10.1016/j.progpolymsci.2014.06.003

    Article  Google Scholar 

  13. Grishin ID, Grishin DF (2016) From regulation of elementary stages of radical processes to controlled synthesis of macromolecules. Russ J Org Chem. https://doi.org/10.1134/S1070428016110014

    Article  Google Scholar 

  14. Krys P, Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Pol J. https://doi.org/10.1016/j.eurpolymj.2017.02.034

    Article  Google Scholar 

  15. Puzin YuI, Yumagulova RKh, Kraikin VA (2001) Radical polymerization of methyl methacrylate and styrene in the presence of ferrocene. Eur Pol J. https://doi.org/10.1016/S0014-3057(01)00038-6

    Article  Google Scholar 

  16. Sigaeva NN, Yumagulova RKh, Frizen AK, Kolesov SV (2009) Complex-radical polymerization of methyl methacrylate in the presence of metallocenes. Pol Sci. https://doi.org/10.1134/S1560090409070045

    Article  Google Scholar 

  17. Sigaeva NN, Yumagulova RKh, Nasretdinova RN, Frizen AK, Kolesov SV (2009) Kinetics of the complex-radical polymerization of methyl methacrylate in the presence of initiating metallocene systems. Kin Cat. https://doi.org/10.1134/S0023158409020049

    Article  Google Scholar 

  18. Sigaeva NN, Friesen AK, Nasibullin II, Ermolaev NL, Kolesov SV (2012) Metallocene catalysis in the complex-radical polymerization of methyl methacrylate. Kin Cat. https://doi.org/10.1134/S0023158412040118

    Article  Google Scholar 

  19. Kolesov SV, Nasibullin II, Frizen AK, Sigaeva NN, Galkin EG (2015) Regularities of postpolymerization in a vinyl monomer–metallocene–radical initiator system. Pol Sci. https://doi.org/10.1134/S1560090415020062

    Article  Google Scholar 

  20. Werner H (1977) New varieties of sandwich complexes. Ang Chem Int Ed. https://doi.org/10.1002/anie.197700013

    Article  Google Scholar 

  21. Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalt Trans. https://doi.org/10.1039/A800056E

    Article  Google Scholar 

  22. Kaminsky W (2016) Production of polyolefins by metallocene catalysts and their recycling by pyrolysis. Macromol Symp. https://doi.org/10.1002/masy.201500127

    Article  Google Scholar 

  23. **e T, McAuley KB, Hsu JCC, Bacon DW (1994) Gas phase ethylene polymerization: production processes, polymer properties, and reactor modeling. Ind Eng Chem Res. https://doi.org/10.1021/ie00027a001

    Article  Google Scholar 

  24. Charpentier PA, Zhu S, Hamielec AE, Brook MA (1997) Continuous solution polymerization of ethylene using metallocene catalyst system, zirconocene dichloride/methylaluminoxane/trimethylaluminum. Ind Eng Chem Res. https://doi.org/10.1021/ie9704152

    Article  Google Scholar 

  25. Huang J, Rempel GL (1997) Kinetic study of propylene polymerization using Et(H4Ind)2ZrCl2/methylalumoxane catalysts. Ind Eng Chem Res. https://doi.org/10.1021/ie9604029

    Article  Google Scholar 

  26. Kou B, McAuley KB, Hsu CC, Bacon DW, Yao KZ (2005) Gas-phase ethylene/hexene copolymerization with metallocene catalyst in a laboratory-scale reactor. Ind Eng Chem Res. https://doi.org/10.1021/ie049067b

    Article  Google Scholar 

  27. Atiqullah M, Anantawaraskul S, Emwas AHM, Al-Harthi MA, Hussain I, Ul-Hamid A, Hossaen A (2013) Effects of supported (nBuCp)2ZrCl2 catalyst active-center distribution on ethylene−1-hexene copolymer backbone heterogeneity and thermal behaviors. Ind Eng Chem Res. https://doi.org/10.1021/ie4005139

    Article  Google Scholar 

  28. Gupta VK, Satish S, Bhardwaj IS (1994) Metallocene complexes of group 4 elements in the polymerization of monoolefins. J Macromol Sci. https://doi.org/10.1080/15321799408014164

    Article  Google Scholar 

  29. Allouche F, Chan KW, Fedorov A, Andersen RA, Copéret C (2018) Silica–Supported Lanthanocene(II) – (≡SiO)LnCp* (Ln = Yb, Sm): Ultra high molecular weight polyethylene without co-catalyst. Ang Chem Int Ed. https://doi.org/10.1002/anie.201800542

  30. Chen EYX (2009) Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev. https://doi.org/10.1021/cr9000258

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ugbolue SCO (2017) Polyolefin fibres: structure, properties and industrial applications. Woodhead Publishing, Sawston

    Google Scholar 

  32. Severn JR, Chadwick JC (2008) Tailor‐made polymers: via immobilization of alpha‐olefin polymerization catalysts. Wiley‐VCH Verlag GmbH & Co. KGaA., Weinheim. https://doi.org/10.1002/9783527621668

  33. Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N (2020) Chiral cyclopentadienyl ligands: design, syntheses and applications in asymmetric catalysis. Angew Chem. https://doi.org/10.1002/ange.202008166

    Article  Google Scholar 

  34. Tan Ch, Chen Ch (2019) Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew Chem Int Ed. https://doi.org/10.1002/anie.201814634

    Article  Google Scholar 

  35. Keyes A, Basbug Alhan HE, Ordonez E, Ha U, Beezer DB, Dau H, Liu YuSh, Tsogtgerel E, Jones GR, Harth E (2019) Olefins and vinyl polar monomers: bridging the gap for next generation materials. Angew Chem Int Ed. https://doi.org/10.1002/anie.201900650

    Article  Google Scholar 

  36. Ning Y, Chen EYX (2008) Metallocene-catalyzed polymerization of methacrylates to highly syndiotactic polymers at high temperatures. J Am Chem Soc. https://doi.org/10.1021/ja710822g

    Article  PubMed  Google Scholar 

  37. Furukawa J, Tsuruta T (1957) Bis-cyclopentadienyl metal in vinyl polymerization. J Soc of Chem Ind Japan. https://doi.org/10.1246/nikkashi1898.60.802

    Article  Google Scholar 

  38. Kern W, Achon-Samblancat MA, Schulz RC (1957) Die anwendung von dicyclopentadienyl-eisen bei der eisen-redox-polymerisation von styrol. Mon Chem. https://doi.org/10.1007/BF00905399

    Article  Google Scholar 

  39. Bamford CH, Finch CA (1962) The use of metal cyclopentadienyl and carbonyl derivatives activated by halogen compounds as polymerization initiators. Zeit Naturf B. https://doi.org/10.1515/znb-1962-0802

    Article  Google Scholar 

  40. Kubota S, Otsu T (1976) Metal-containing initiator system. Kob Ronb, XXXVIII. Vinyl polymerization with various metallocenes. https://doi.org/10.1295/koron.33.201

    Book  Google Scholar 

  41. Kaeriyama K (1971) Polymerization of methyl methacrylate by metallocenes. Pol. https://doi.org/10.1016/0032-3861(71)90060-7

    Article  Google Scholar 

  42. Islamova RM (2016) Iron compounds in controlled radical polymerization: ferrocenes, (clathro)chelates, and porphyrins. Russ J Gen Chem. https://doi.org/10.1134/S1070363216010217

    Article  Google Scholar 

  43. Puzin YuI, Prokudina EM, Yumagulova RKh, Muslukhov RR, Kolesov SV (2002) Stereospecific radical polymerization of methyl methacrylate in the presence of titanocene dichloride. Dokl Phys Chem. https://doi.org/10.1023/A:1020343820445

    Article  Google Scholar 

  44. Islamova RM, Puzin YuI, Yumagulova RKh, Fatykhov AA, Parfenova LV, Dzhemilev UM, Monakov YuB (2006) Effect of dicyclopentadiene and diindenezirconocene dichlorides on free-radical polymerization of methyl methacrylate. Pol Sci. https://doi.org/10.1134/S0965545X06070078

    Article  Google Scholar 

  45. Kolesov SV, Sigaeva NN, Nasibullin II, Friesen AK (2016) In: Compositional analysis of polymers. An engineering approach. CRC Press Taylor & Francis Group. Boca Raton. ISBN: 978-1-77188-288-0

  46. Sigaeva NN, Kolesov SV, Abdulgalimova AU, Garifullina RN, Prokudina EM, Spivak SI, Budtov VP, Monakov YuB (2004) Kinetic nonuniformity in complex-radical polymerization of styrene in the presence of metallocene initiating systems. Pol Sci 46(A):784–789

    Google Scholar 

  47. Sigaeva NN, Kolesov SV, Prokudina EM, Nikonchuk EYu, Monakov YuB (2002) Kinetic inhomogeneity in the radical polymerization of styrene in the presence of the benzoyl peroxide–metallocene system. Dokl Chem. https://doi.org/10.1023/A:1020795425144

    Article  Google Scholar 

  48. Ulitin NV, Tereshchenko KA, Friesen AK, Shiyan DA, Takhautdinova AV, Kolesov SV, Khursan SL (2018) Modeling of elementary reactions and kinetics of radical-initiated methyl methacrylate polymerization in the presence of ferrocene. Int J Chem Kin. https://doi.org/10.1002/kin.21209

    Article  Google Scholar 

  49. Friesen AK, Ulitin NV, Khursan SL, Shiyan DA, Tereshchenko KA, Kolesov SV (2017) The quantum-chemical analysis of mechanism of radical-initiated polymerization of styrene in the presence of ferrocene. Mend Comm. https://doi.org/10.1016/j.mencom.2017.07.017

    Article  Google Scholar 

  50. Perevalova EG, Reshetova MD, Grandberg KI (1983) Methods of organoelement chemistry. organoiron compounds. Ferrocene. Nauka, Moscow

  51. Brandrup J, Immergut EH, Grulke EA (1999) Polymer Handbook. John Wiley & Sons Inc, New York

    Google Scholar 

  52. Olaj OF, Schnöll-Bitai I (1989) Laser-flash-initiated polymerization as a tool for evaluating (individual) kinetic constants of free-radical polymerization – (5). Complete analysis by means of a single experiment. Eur Pol J. https://doi.org/10.1016/0014-3057(89)90022-0

    Article  Google Scholar 

  53. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J Ass Comp Mach 8:212–229

    Article  Google Scholar 

  54. Agareva NA, Ivanov VF, Aleksandrov AP, Bityurin NM, Smirnova LA (2004) Free-radical polymerization of methyl methacrylate in the presence of high ferrocene concentrations. Vysokomolekulyarnye Soedineniya 46(A):217–227

    CAS  Google Scholar 

  55. Beckwith ALJ, Leydon RJ (1964) Free-radical substitution of ferricinium ion the mechanism of the arylation of ferrocene. Tetrahedron. https://doi.org/10.1016/S0040-4020(01)98412-1

    Article  Google Scholar 

  56. Kalenda P (1995) Ferrocene and some of its derivatives used as accelerators of curing reactions in unsaturated polyester resins. Eur Pol J. https://doi.org/10.1016/0014-3057(95)00067-4

    Article  Google Scholar 

  57. Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fraction. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

Download references

Acknowledgements

This study was carried out within the state task No. 075-01261-22-00 for 2020-2022 (scientific project “Catalysis in Oil Refining and Petrochemicals”, Research Funder is Ministry of Science and Higher Education of the Russian Federation).

This study was carried out using the equipment of the Center for Collective Use “Nanomaterials and Nanotechnology” of the Kazan National Research Technological University with the financial support of the Ministry of Science and Higher Education of the Russian Federation under agreement No. 075-15-2021-699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Ulitin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1217 KB)

Supplementary file2 (DOCX 58 KB)

Appendix

Appendix

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, K.A., Shiyan, D.A., Ulitin, N.V. et al. Experimental study and kinetic modeling of radical-coordination styrene polymerization with participation of ferrocene. J Polym Res 29, 429 (2022). https://doi.org/10.1007/s10965-022-03273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03273-2

Keywords

Navigation