Log in

High-Voltage AlInGaN LED Chips

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A high-voltage light-emitting diode (LED) flip chip based on an AlInGaN heterostructure is developed and fabricated. The LED flip chip consists of 16 elements connected in series, each of which is a convential LED. The chip with a total area of 1.25 × 1.25 mm is intended for a working current of 20 mA and a forward voltage of 48 V. To improve the current-distribution uniformity over the active region of the chip elements and to minimize the losses of the element area occupied by the n-type contact, the n-type contact pads in them are arranged inside the p-type contact region due to the two-level metallization layout with an intermediate insulating layer of dielectric. The arrangement topology of the contact pads is developed using numerical simulation. An increase in the quantum efficiency of the chip is provided by the application of combinations of metals with a high reflectance at the LED emission wavelength, which are used when fabricating n- and p-type contacts as well as current-carrying strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, Appl. Phys. Lett. 89, 071109 (2006).

    Article  ADS  Google Scholar 

  2. J. Lv, C. Zheng, Q. Chen, S. Zhou, and S. Liu, Phys. Status Solidi 213, 3150 (2016).

    Article  ADS  Google Scholar 

  3. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, IEEE Photon. Technol. Lett. 18, 1152 (2006).

    Article  ADS  Google Scholar 

  4. S.-M. Jeong, S. Kissinger, D.-W. Kim, S. Jae Lee, J.-S. Kim, H.-K. Ahn, and C.-R. Lee, J. Cryst. Growth 312, 258 (2010).

    Article  ADS  Google Scholar 

  5. C. H. Chiu, P. C. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, Opt. Express 17, 21250 (2009).

    Article  ADS  Google Scholar 

  6. J. K. Kim, T. Gessmann, E. F. Schubert, J.-Q. **, H. Luo, J. Cho, C. Sone, and Y. Park, Appl. Phys. Lett. 88, 013501 (2006).

    Article  ADS  Google Scholar 

  7. L. K. Markov, I. P. Smirnova, A. S. Pavlyuchenko, E. M. Arakcheeva, and M. M. Kulagina, Semiconductors 43, 1521 (2009).

    Article  ADS  Google Scholar 

  8. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea,  M. J.  Ludowise,  G.  Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001).

    Article  ADS  Google Scholar 

  9. D. A. Zakheim, I. P. Smirnova, E. M. Arakcheeva, M. M. Kulagina, S. A. Gurevich, I. V. Rozhansky, V. W. Lundin, A. F. Tsatsulnikov, A. V. Sakharov, A. V. Fomin, A. L. Zakheim, E. D. Vasil’eva, and G. V. Itkinson, Phys. Status Solidi 1, 2401 (2004).

    Article  Google Scholar 

  10. S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, IEEE Trans. Adv. Packag. 28, 273 (2005).

    Article  Google Scholar 

  11. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 77, 2822 (2000).

    Article  ADS  Google Scholar 

  12. J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, IEEE Photon. Technol. Lett. 20, 175 (2008).

    Article  ADS  Google Scholar 

  13. L. K. Markov, I. P. Smirnova, A. S. Pavlyuchenko, M. V. Kukushkin, E. D. Vasil’eva, A. E. Chernyakov, and A. S. Usikov, Semiconductors 47, 409 (2013).

    Article  ADS  Google Scholar 

  14. R. Jaschke and K. F. Hoffmann, PCIM Europe (Nuremberg, Germany, 2016), p. 1300.

    Google Scholar 

  15. T. Zhan, Y. Zhang, J. Li, J. Ma, Z. Liu, X. Yi, G. Wang, and J. Li, J. Semicond. 34, 094010 (2013).

  16. Y.-C. Chiang, B.-C. Lin, K.-J. Chen, S.-H. Chiu, C.-C. Lin, P.-T. Lee, M.-H. Shih, and H.-C. Kuo, Int. J. Photoenergy 2014, 1 (2014).

    Article  Google Scholar 

  17. M. Donofrio, J. Ibbetson, and Z. J. Yao, US Patent No. 8368100 B2 (2013).

  18. D. A. Zakheim, G. V. Itkinson, M. V. Kukushkin, L. K. Markov, O. V. Osipov, A. S. Pavluchenko, I. P. Smirnova, and D. A. Bauman, Phys. Status Solidi 12, 381 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Markov.

Ethics declarations

The authors claim that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, L.K., Kukushkin, M.V., Pavlyuchenko, A.S. et al. High-Voltage AlInGaN LED Chips. Semiconductors 53, 1529–1534 (2019). https://doi.org/10.1134/S1063782619110125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619110125

Keywords:

Navigation