Log in

Atomic steps on an ultraflat Si(111) surface upon sublimation

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The kinetics of atomic steps on an ultraflat Si(111) surface is studied by in situ ultrahigh-vacuum reflection electron microscopy at temperatures of 1050–1350°C. For the first time it is experimentally shown that the rate of displacement of an atomic step during sublimation nonlinearly depends on the width of the adjacent terrace. It is established that the atomic mechanism of mass-transport processes at the surface at temperatures higher than 1200°C is controlled by nucleation and the diffusion of surface vacancies rather than of adsorbed Si atoms. The studies make it possible to estimate the activation energy of the dissolution of vacancies from the surface into the bulk of Si. The estimated activation energy is (4.3 ± 0.05) eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Finnie and Y. Homma, Surf. Sci. 500, 437 (2002).

    Article  ADS  Google Scholar 

  2. Ch. Misbah, O. Pierre-Louis, and Y. Saito, Rev. Mod. Phys. 82, 981 (2010).

    Article  ADS  Google Scholar 

  3. W. Burton, N. Cabrera, and F. Frank, Phil. Trans. A 243, 299 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  4. Yu. Hervieu and I. Markov, Surf. Sci. 628, 76 (2014).

    Article  ADS  Google Scholar 

  5. J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. 61, 1 (2006).

    Article  ADS  Google Scholar 

  6. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys. 47, 399 (1984).

    Article  ADS  Google Scholar 

  7. K. L. Man, A. B. Pang, and M. S. Altman, Surf. Sci. 601, 4669 (2007).

    Article  ADS  Google Scholar 

  8. P. Finnie and Y. Homma, J. Vac. Sci. Technol. A 18, 1941 (2000).

    Article  ADS  Google Scholar 

  9. H. Hibino, C.-W. Hu, T. Ogino, and I. S. T. Tsong, Phys. Rev. B 63, 245402 (2001).

    Article  ADS  Google Scholar 

  10. H.-C. Jeong and E. D. Williams, Surf. Sci. Rep. 34, 171 (1999).

    Article  ADS  Google Scholar 

  11. A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, and S. I. Stenin, Surf. Sci. 213, 157 (1989).

    Article  ADS  Google Scholar 

  12. Y. Homma, H. Hibino, and T. Ogino, Phys. Rev. B 58, 13146 (1998).

    Article  ADS  Google Scholar 

  13. A. V. Latyshev, A. B. Krasilnikov, A. L. Aseev, and S. I. Stenin, Surf. Sci. 227, 24 (1990).

    Article  ADS  Google Scholar 

  14. J. M. Bermond, J. J. Métois, X. Egéa, and C. Alfonso, Surf. Sci. 330, 48 (1995).

    Article  ADS  Google Scholar 

  15. A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, and S. I. Stenin, Phys. Status Solidi A 113, 421 (1989).

    Article  ADS  Google Scholar 

  16. Y. Fukaya and Y. Shigeta, Phys. Rev. Lett. 85, 5150 (2000).

    Article  ADS  Google Scholar 

  17. Y. Homma, H. Hibino, T. Ogino, and N. Aizawa, Phys. Rev. B, 55, R10 237 (1997).

    Google Scholar 

  18. Y. Fukaya and Y. Shigeta, Phys. Rev. B 65, 195415 (2002).

    Article  ADS  Google Scholar 

  19. C. Misbah, O. Pierre-Louis, and A. Pimpinelli, Phys. Rev. B 51, 17283 (1995).

    Article  ADS  Google Scholar 

  20. A. Pimpinelli and J. Villain, Physica A 204, 521 (1994).

    Article  ADS  Google Scholar 

  21. S. V. Sitnikov, S. S. Kosolobov, and A. V. Latyshev, RF Patent No. 2453874.

  22. A. V. Latyshev, A. B. Krasilnikov, and A. L. Aseev, Ultramiroscopy 48, 377 (1993).

    Article  Google Scholar 

  23. S. Sitnikov, S. Kosolobov, and A. Latyshev, Surf. Sci. 633, L1 (2015).

    Article  ADS  Google Scholar 

  24. N. Shimizu, Y. Tanishiro, K. Takayanagi, and K. Yagi, Surf. Sci. 191, 28 (1987).

    Article  ADS  Google Scholar 

  25. S. S. Kosolobov, A. L. Aseev, and A. V. Latyshev, Semicondutors 35, 1038 (2001).

    Article  ADS  Google Scholar 

  26. N. Kitamura, M. G. Lagally, and M. B. Webb, Phys. Rev. Lett. 71, 2082 (1993).

    Article  ADS  Google Scholar 

  27. Y.-N. Yang and E. D. Williams, Phys. Rev. Lett. 72, 1862 (1994).

    Article  ADS  Google Scholar 

  28. Ch. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976; Moscow, Nauka, 1978).

    MATH  Google Scholar 

  29. M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Phys. Rev. B 55, 14279 (1997).

    Article  ADS  Google Scholar 

  30. D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 6788 (1982).

    Article  ADS  Google Scholar 

  31. M. Suezawa, N. Fukata, Y. Iijima, and I. Yonenaga, J. Appl. Phys. 53, 091302 (2014).

    Article  Google Scholar 

  32. R. Kube, H. Bracht, E. Hu[umlaut]ger, H. Schmidt, J. Lundsgaard Hansen, A. Nylandsted Larsen, J. W. Ager III, E. E. Haller, T. Geue, and J. Stahn, Phys. Rev. B 88, 085206 (2013).

    Article  ADS  Google Scholar 

  33. Y. Homma, P. Finnie, and M. Uwaha, Surf. Sci. 492, 125 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sitnikov.

Additional information

Original Russian Text © S.V. Sitnikov, A.V. Latyshev, S.S. Kosolobov, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 5, pp. 607–611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikov, S.V., Latyshev, A.V. & Kosolobov, S.S. Atomic steps on an ultraflat Si(111) surface upon sublimation. Semiconductors 50, 596–600 (2016). https://doi.org/10.1134/S1063782616050201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616050201

Keywords

Navigation