Log in

Central Composite Design for Optimizing Hollow Fiber Liquid Phase Microextraction of Carbamazepine from Aqueous and Biological Samples

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A simple, sensitive and efficient method based on hollow fiber liquid phase microextraction followed by high performance liquid chromatography has been developed for preconcentration and determination of trace carbamazepine, an antiepileptic drug, in aqueous and biological solutions.The main parameters affecting the extraction efficiency were studied using response surface methodology. Central composite design was performed at five levels of extraction time, pH and ionic strength. The final model showed good linearity and performance. The optimal conditions were observed at 48.5 min, 8.9 and 0.29 M for extraction time, pH and ionic strength, respectively. The calibration curve was linear in the range of 5–500 µg/L with correlation coefficient of 0.9999 and limit of detection of 2.8 µg/L. Finally, the applicability of the proposed method was evaluated by extraction and determination of the drug in aqueous and plasma samples. The intra- and inter-day coefficients of variation were less than 4.7 for all real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alrashood, S.T., Profiles of Drug Substances, Excipients and Related Methodology, vol. 41, New York: Academic, 2016.

    Google Scholar 

  2. Wu, Sh., Xu, W., Subhani, Q., Yang, B., Chen, D., Zhu, Y., and Li, L., Talanta, 2012, vol. 101, p. 541.

    Article  CAS  Google Scholar 

  3. Yang, B., Kookana, R.S., Williams, M., Du, J., Doan, H., and Kumar, A., Water Res., 2016, vol. 100, p. 413.

    Article  CAS  Google Scholar 

  4. Kalhor, H., Hashemipour, S., Yaftian, M.R., and Shahdousti, P., Int. J. Ion Mobil. Spectrom., 2015, vol. 19, p. 51.

    Article  Google Scholar 

  5. Abo El Hamd, M., Wada, M., Ikeda, R., Kawakami, Sh., and Nakashima, K., Biol. Pharm. Bull., 2015, vol. 38, p. 1250.

    Article  CAS  Google Scholar 

  6. Asadi, M., Haji Shabani, A.M., Dadfarnia, S., and Abbasi, B., Chin. J. Chromatogr., 2015, vol. 33, p. 634.

    Article  CAS  Google Scholar 

  7. Esrafili, A., Yamini, Y., and Shariati, Sh., Anal. Chim. Acta, 2007, vol. 604, p. 127.

    Article  CAS  Google Scholar 

  8. Esrafili, A., Yamini, Y., Ghambarian, M., and Ebrahimpour, B., J. Chromatogr. A, 2012, vol. 1262, p. 27.

    Article  CAS  Google Scholar 

  9. Saleh, A., Yamini, Y., Faraji, M., Shariati, Sh., and Rezaee, M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, vol. 877, p. 1758.

    Article  CAS  Google Scholar 

  10. Shariati, Sh., Yamini, Y., and Esrafili, A., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, vol. 877, p. 393.

    Article  CAS  Google Scholar 

  11. Yong, Sh., Chen, Y., Lee, T.K., and Lee, H.K., Talanta, 2014, vol. 126, p. 163.

    Article  CAS  Google Scholar 

  12. Arvand, M., Bozorgzadeh, E., and Shariati, Sh., J. Food Compos. Anal., 2013, vol. 31, p. 275.

    Article  CAS  Google Scholar 

  13. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., and Mehranian, M., J. Hazard. Mater., 2005, vol. 123, p. 187.

    Article  CAS  Google Scholar 

  14. Mason, R.L., Gunst, R.F., and Hess, J.J., Statistical Design and Analysis of Experiments with Applications to Engineering and Science, London: Wiley, 2003.

    Google Scholar 

  15. Montgomery, D.C., Runger, G.C., and Hubele, N.F., Engineering Statistics, Hoboken, NJ: Wiley, 2001.

    Google Scholar 

  16. Vining, G.G., Statistical Methods for Engineers, London: Duxburg, 2003.

    Google Scholar 

  17. British Pharmacopoeia, 2013. https://www.pharmacopoeia.com. Assessed May 5, 2017.

  18. Jofré, V.P., Assof, M.V., Fanzone, M.L., Goicoechea, H.C., Martínez, L.D., and Silva, M.F., Anal. Chim. Acta, 2010, vol. 683, p. 126.

    Article  Google Scholar 

  19. Queiroz, R.H.C., Bertucci, C., Malfará, WR., Dreossi, S.A.C., Chaves, A.R., Valério, D.A.R., and Queiroz, M.E.C., J. Pharm. Biomed. Anal., 2008, vol. 48, p. 428.

    Article  CAS  Google Scholar 

  20. Ferreira, A., Rodrigues, M., Oliveira, P., Francisco, J., Fortuna, A., Rosado, L., Rosado, P., Falcão, A., and Alves, G., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2014, vol. 971, p. 20.

    Article  CAS  Google Scholar 

  21. Vosough, M., Ghafghazi, Sh., and Sabetkasaei, M., Talanta, 2014, vol. 119, p. 17.

    Article  CAS  Google Scholar 

Download references

Funding

Financial support by Rasht Branch, Islamic Azad University Grant No. 4.5830 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Shariati.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elahe Bozorgzadeh, Shariati, S. & Esmaeilnejad, A. Central Composite Design for Optimizing Hollow Fiber Liquid Phase Microextraction of Carbamazepine from Aqueous and Biological Samples. J Anal Chem 75, 154–160 (2020). https://doi.org/10.1134/S1061934820020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820020033

Keywords:

Navigation