Log in

Two Color Pump-Probe Dichroism and Birefringence Measurements in Atmospheric Molecules

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The experimental study of the laser induced alignment of linear atmospheric molecules naturally present into the air using an ultra-short (femtosecond temporal range) and ultra-intense (TW · cm–2 fluence range) linearly polarised laser pulse is described. The measurements are conducted under a two-color pump-probe configuration using an IR pump beam and a blue probe pulse (red-blue configuration), which interacts with the molecules after they have been exposed to the IR alignment pulse. The optical birefringence and dichroism polarimetric signals have been both strictly measured into the same experimental conditions into this two-color configuration. A balanced detection permits the heterodyne signal to be got directly. Under the short and intense laser pulse exposure, the molecules present into the atmospheric air (under standard room temperature conditions) aligne, and periodic transient revivals are observed (field free alignment approach into non-adiabatic conditions). The results obtained are in accordance with those obtained in the red-red configuration and confirm the approach proposed as relevant for atmospheric sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Lee, D. Villeneuve, P. Corkum, A. Stolow, and J. G. Underwood, “Field-free three-dimensional alignment of polyatomic molecules,” Phys. Rev. Lett. 97, 173001 (2006).

    Article  ADS  Google Scholar 

  2. H. Stapelfeldt and T. Seideman, “Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75, 543 (2003).

    Article  ADS  Google Scholar 

  3. D. P. Pullman, B. Friedrich, and D. R. Herschbach, “Facile alignment of molecular rotation in supersonic beams,” J. Chem. Phys. 93, 3224 (1990).

    Article  ADS  Google Scholar 

  4. V. Aquilanti, D. Ascenzi, D. Cappelletti, and F. Pirani, “Velocity dependence of collisional alignment of oxygen molecules in gaseous expansions,” Nature 371, 399–402 (1994).

    Article  ADS  Google Scholar 

  5. V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, S. Cavalli, M. de Castro Vitores, and F. Pirani, “Molecular beam scattering of aligned oxygen molecules. The nature of the bond in the O2–O2 dimer,” J. Am. Chem. Soc. 121, 10794 (1999).

    Article  Google Scholar 

  6. F. Pirani, D. Cappelletti, M. Bartolomei, V. Aquilanti, M. Scotoni, M. Vescovi, D. Ascenzi, and D. Bassi, “Orientation of benzene in supersonic expansions, probed by IR-laser absorption and by molecular beam scattering,” Phys. Rev. Lett. 86, 5035 (2001).

    Article  ADS  Google Scholar 

  7. D. Cappelletti, F. Pirani, M. Scotoni, G. Demarchi, L. Vattuone, A. Gerbi, and M. Rocca, “Cooling and alignment of ethylene molecules in supersonic seeded expansions: diagnostic and application to gas phase and surface scattering experiments,” Eur. Phys. J. D 38, 121 (2006).

    Article  ADS  Google Scholar 

  8. H. Loesch and A. Remscheid, “Brute force in molecular reaction dynamics: a novel technique for measuring steric effects,” J. Chem. Phys. 93, 4779 (1990).

    Article  ADS  Google Scholar 

  9. B. Friedrich and D. Herschbach, “Alignment and trap** of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623 (1995).

    Article  ADS  Google Scholar 

  10. K. J. Franks, H. Li, R. J. Hanson, and W. Kong, “Selective excitation of ICN achieved via brute force orientation,” J. Phys. Chem. A 102, 7881 (1998).

    Article  Google Scholar 

  11. P. R. Brooks, J. S. McKillop, and H. G. Pippin, “Molecular beam reaction of K atoms with sideways oriented CF3I,” Chem. Phys. Lett. 66, 144 (1979).

    Article  ADS  Google Scholar 

  12. V. A. Cho and R. B. Bernstein, “Tight focusing of beams of polar polyatomic molecules via the electrostatic hexapole lens,” J. Phys. Chem. 95, 8129 (1991).

    Article  Google Scholar 

  13. D. A. Baugh, D. Y. Kim, V. A. Cho, L. C. Pipes, J. C. Petteway, and C. D. Fuglesang, “Production of a pure, single ro-vibrational quantum-state molecular beam,” Chem. Phys. Lett. 219, 207 (1994).

    Article  ADS  Google Scholar 

  14. R. C. Estler and R. N. Zare, “Laser-induced chemiluminescence: variation of reaction rates with reagent approach geometry,” J. Am. Chem. Soc. 100, 1323 (1978).

    Article  Google Scholar 

  15. V. Kumarappan, S. S. Viftrup, L. Holmegaard, C. Z. Bisgaard, and H. Stapelfeldt, “Aligning molecules with long or short laser pulses,” Phys. Scr. 76, C63 (2007).

    Article  ADS  Google Scholar 

  16. F. Rosca-Pruna and M. Vrakking, “Experimental observation of revival structures in picosecond laserinduced alignment of I,” Phys.Rev. Lett. 87, 153902 (2001).

    Article  ADS  Google Scholar 

  17. B. Zon and B. Katsnelson, “Nonresonant scattering of intense light by a molecule,” J. Exp. Theor. Phys. 69, 1166 (1975).

    Google Scholar 

  18. S. Ramakrishna and T. Seideman, “Intense laser alignment in dissipative media as a route to solvent dynamics,” Phys. Rev. Lett. 95, 113001 (2005).

    Article  ADS  Google Scholar 

  19. V. Loriot, P. Tzallas, E. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40, 2503 (2007).

    Article  ADS  Google Scholar 

  20. J.-M. Hartmann and C. Boulet, “Quantum and classical approaches for rotational relaxation and nonresonant laser alignment of linear molecules: A comparison for CO2 gas in the nonadiabatic regime,” J. Chem. Phys. 136, 184302 (2012).

    Article  ADS  Google Scholar 

  21. N. Owschimikow, B. Schmidt, and N. Schwentner, “Laser-induced alignment and anti-alignment of rotationally excited molecules,” Phys. Chem. Chem. Phys. 13, 8671 (2011).

    Article  Google Scholar 

  22. M. Renard, E. Hertz, S. Guerin, H.-R. Jauslin, B. Lavorel, and O. Faucher, “Control of field-free molecular alignment by phase-shaped laser pulse,” Phys. Rev. A 72, 025401 (2005).

    Article  ADS  Google Scholar 

  23. V. Renard, O. Faucher, and B. Lavorel, “Measurement of laser-induced alignment of molecules by cross defocusing,” Opt. Lett. 30, 70 (2005).

    Article  ADS  Google Scholar 

  24. V. Loriot, PhD Thesis (Université de Bourgogne, 2009).

  25. E. Hertz, A. Rouzée, S. Guérin, B. Lavorel, and O. Faucher, “Optimization of field-free molecular alignment by phase-shaped laser pulses,” Phys. Rev. A 75, 031403 (2007).

    Article  ADS  Google Scholar 

  26. M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648 (2013).

    Article  ADS  Google Scholar 

  27. D. Daems, S. Guerin, E. Hertz, H. R. Jauslin, B. Lavorel, and O. Faucher, “Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses,” Phys. Rev. Lett. 95, 063005 (2005).

    Article  ADS  Google Scholar 

  28. K. F. Lee, E. A. Shapiro, D. M. Villeneuve, and P. B. Corkum, “Coherent creation and annihilation of rotational wave packets in incoherent ensembles,” Phys. Rev. A 73, 033403 (2006).

    Article  ADS  Google Scholar 

  29. A. Rouzée, S. Guérin, O. Faucher, and B. Lavorel, “Field-free molecular alignment of asymmetric top molecules using elliptically polarized laser pulses,” Phys. Rev. A 77, 043412 (2008).

    Article  ADS  Google Scholar 

  30. I. Nevo, L. Holmegaard, J. H. Nielsen, J. L. Hansen, H. Stapelfeldt, F. Filsinger, G. Meijer, and J. Küpper, “Laser-induced 3D alignment and orientation of quantum state-selected molecules,” Phys. Chem. Chem. Phys. 11, 9912 (2009).

    Article  Google Scholar 

  31. E. Shapiro, M. Spanner, and M. Y. Ivanov, “Quantum logic approach to wave packet control,” Phys. Rev. Lett. 91, 237901 (2003).

    Article  ADS  Google Scholar 

  32. M. Spanner, E. Shapiro, and M. Ivanov, “Coherent control of rotational wave-packet dynamics via fractional revivals,” Phys. Rev. Lett. 92, 093001 (2004).

    Article  ADS  Google Scholar 

  33. J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. Villeneuve, and P. Corkum, “Controlling high harmonic generation with molecular wave packets,” Phys. Rev. Lett. 94, 123902 (2005).

    Article  ADS  Google Scholar 

  34. S. Fleischer, I. S. Averbukh, and Y. Prior, “Isotopeselective laser molecular alignment,” Phys. Rev. A 74, 041403 (2006).

    Article  ADS  Google Scholar 

  35. L. Vattuone, A. Gerbi, D. Cappelletti, F. Pirani, R. Gunnella, L. Savio, and M. Rocca, “Selective production of reactive and non reactive oxygen atoms on Pd (001) by rotationally aligned O2,” Angew. Chem., Int. Ed. 48, 4845–4848 (2009).

    Article  Google Scholar 

  36. A. Gerbi, L. Savio, L. Vattuone, F. Pirani, D. Cappelletti, and M. Rocca, “Role of rotational alignment in dissociative chemisorption and oxidation: O2 on bare and CO-precovered Pd (100),” Angew. Chem., Int. Ed. 45, 6655 (2006).

    Article  Google Scholar 

  37. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulse,” Appl. Phys. B: Lasers Opt. 71, 573 (2000).

    Article  ADS  Google Scholar 

  38. I. Penner, Y. S. Balin, M. Makarova, M. Y. Arshinov, B. Voronin, B. Belan, S. Vasilchenko, V. Serdyukov, L. Sinitsa, E. Polovtseva, D. M. Kabanov, and G. P. Kokhanenko, “Investigations of total water vapor content using various techniques. Comparison of water vapor and aerosol profiles,” Opt. Atmos. Okeana 27, 728 (2014).

    Google Scholar 

  39. C. R. Philbrick, “Lidar profiles of atmospheric structure properties,” in Orlando'91, Orlando, FL (International Society for Optics and Photonics, 1991), pp. 76–84.

    Google Scholar 

  40. V. Marichev, “Combined method for optical sensing of the lower and middle atmosphere,” Opt. Atmos. Okeana 29, 348 (2016).

    Article  Google Scholar 

  41. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” Opt. Eng. 50, 213 (1995).

    Google Scholar 

  42. V. Zuev, V. Marichev, S. Bondarenko, S. Dolgii, and E. Sharabarin, “Lidar measurements of temperature using Rayleigh light scattering in the lower stratosphere for the period from May to December of 1995,” Atmos. Ocean. Opt. 9, 879 (1996).

    Google Scholar 

  43. V. Burlakov, S. Dolgii, A. Makeev, G. Matvienko, A. Nevzorov, A. Soldatov, O. Romanovskii, O. Kharchenko, and S. Yakovlev, “Lidar technologies for remote sensing of atmospheric parameters,” Opt. Atmos. Okeana 26, 829 (2013).

    Google Scholar 

  44. J. A. Cooney, “Measurements on the Raman component of laser atmospheric backscatter,” Appl. Phys. Lett. 12, 40 (1968).

    Article  ADS  Google Scholar 

  45. R. Strauch, V. Derr, and R. Cupp, “Atmospheric temperature measurement using Raman backscatter,” Applied optics 10, 2665 (1971).

    Article  ADS  Google Scholar 

  46. R. Ferrare, S. Melfi, D. Whiteman, K. Evans, F. Schmidlin, and D. O. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177 (1995).

    Article  ADS  Google Scholar 

  47. V. Zuev, V. Marichev, S. Bondarenko, S. Dolgii, and L. Sharabarin, “Preliminary results of tropospheric temperature sounding using a raman lidar on the first vibrational-rotational transition of nitrogen molecules,” Atmos. Ocean. Opt. 9, 1022 (1996).

    Google Scholar 

  48. S. Bobrovnikov and A. Nadeev, “Comparison of signal processing methods in remote temperature measurements by pure rotational Raman spectra,” Atmos. Ocean. Opt. 23, 523 (2010).

    Article  Google Scholar 

  49. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451 (2010).

    Article  ADS  Google Scholar 

  50. B. Lavorel, P. Babilotte, G. Karras, F. Billard, E. Hertz, and O. Faucher, “Measurement of dichroism in aligned molecules,” Phys. Rev. A 94, 043422 (2016).

    Article  ADS  Google Scholar 

  51. D. Normand, L. Lompre, and C. Cornaggia, “Laserinduced molecular alignment probed by a doublepulse experiment,” J. Phys. B 25, L497 (1992).

    Article  ADS  Google Scholar 

  52. J. J. Larsen, H. Sakai, C. Safvan, I. Wendt-Larsen, and H. Stapelfeldt, “Aligning molecules with intense nonresonant laser fields,” J. Chem. Phys. 111, 7774 (1999).

    Article  ADS  Google Scholar 

  53. H. Sakai, C. Safvan, J. J. Larsen, K. M. Hilligsoe, K. Hald, and H. Stapelfeldt, “Controlling the alignment of neutral molecules by a strong laser field,” J. Chem. Phys. 110, 10235 (1999).

    Article  ADS  Google Scholar 

  54. F. Rosca-Pruna and M. Vrakking, “Revival structures in picosecond laser-induced alignment of I2 molecules. I. Experimental results,” J. Chem. Phys. 116, 6567 (2002).

    Article  ADS  Google Scholar 

  55. J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470 (2000).

    Article  ADS  Google Scholar 

  56. V. Kumarappan, C. Z. Bisgaard, S. S. Viftrup, L. Holmegaard, and H. Stapelfeldt, “Role of rotational temperature in adiabatic molecular alignment,” J. Chem. Phys. 125, 194309 (2006).

    Article  ADS  Google Scholar 

  57. A. Sugita, M. Mashino, M. Kawasaki, Y. Matsumi, R. J. Gordon, and R. Bersohn, “Control of photofragment velocity anisotropy by optical alignment of CH3I,” J. Chem. Phys. 112, 2164 (2000).

    Article  ADS  Google Scholar 

  58. O. Ghafur, A. Rouzee, A. Gijsbertsen, W. K. Siu, S. Stolte, and M. J. J. Vrakking, “Impulsive orientation and alignment of quantum-state-selected NO molecules,” Nat. Phys. 5, 289 (2009).

    Article  Google Scholar 

  59. A. Rouzée, O. Ghafur, K. Vidma, A. Gijsbertsen, O. M. Shir, T. Back, A. Meijer, W. J. van der Zande, D. Parker, and M. J. Vrakking, “Evolutionary optimization of rotational population transfer,” Phys. Rev. A 84, 033415 (2011).

    Article  ADS  Google Scholar 

  60. W. Kim and P. M. Felker, “Ground-state intermolecular spectroscopy and pendular states in benzene–argon,” J. Chem. Phys. 107, 2193 (1997).

    Article  ADS  Google Scholar 

  61. T. Seideman, “Manipulating external degrees of freedom with intense light: Laser focusing and trap** of molecules,” J. Chem. Phys. 106, 2881 (1997).

    Article  ADS  Google Scholar 

  62. V. Renard, O. Faucher, and B. Lavorel, “Measurement of laser-induced alignment of molecules by cross defocusing,” Opt. Lett. 30, 70 (2005).

    Article  ADS  Google Scholar 

  63. K. J. Miller, “Calculation of the molecular polarizability tensor,” J. Am. Chem. Soc. 112, 8543 (1990).

    Article  Google Scholar 

  64. T. Vieillard, PhD Thesis (Université de Bourgogne, 2011).

  65. S. Fleischer, Y. Khodorkovsky, E. Gershnabel, Y. Prior, and I. S. Averbukh, “Molecular alignment induced by ultrashort laser pulses and its impact on molecular motion,” Isr. J. Chem. 52, 414 (2012).

    Article  Google Scholar 

  66. L. Yuan, S. W. Teitelbaum, A. Robinson, and A. S. Mullin, “Dynamics of molecules in extreme rotational states,” in Proc. Natl Acad. Sci. 108, 6872 (2011).

    Article  ADS  Google Scholar 

  67. G. Karras, E. Hertz, F. Billard, B. Lavorel, J.-M. Hartmann, and O. Faucher, “Using molecular alignment to track ultrafast collisional relaxation,” Phys. Rev. A 89, 063411 (2014).

    Article  ADS  Google Scholar 

  68. F. Chaussard, T. Vieillard, F. Billard, O. Faucher, J.-M. Hartmann, C. Boulet, and B. Lavorel, “Dissipation of post-pulse laser-induced alignment of CO2 through collisions with Ar,” J. Raman Spectrosc. 46, 691 (2015).

    Article  ADS  Google Scholar 

  69. T. Seideman, “Revival structure of aligned rotational wave packets,” Phys. Rev. Lett. 83, 4971 (1999).

    Article  ADS  Google Scholar 

  70. V. Loriot, R. Tehini, E. Hertz, B. Lavorel, and O. Faucher, “Snapshot imaging of postpulse transient molecular alignment revivals,” Phys. Rev. A 78, 013412 (2008).

    Article  ADS  Google Scholar 

  71. V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90, 153601 (2003).

    Article  ADS  Google Scholar 

  72. P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).

    Article  ADS  Google Scholar 

  73. M. Morgen, W. Price, L. Hunziker, P. Ludowise, M. Blackwell, and Y. Chen, “Femtosecond Ramaninduced polarization spectroscopy studies of rotational coherence in O2, N2 and CO2,” Chem. Phys. Lett. 209, 1 (1993).

    Article  ADS  Google Scholar 

  74. V. Renard, M. Renard, S. Guérin, Y. Pashayan, B. Lavorel, O. Faucher, and H.-R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90, 153601 (2003).

    Article  ADS  Google Scholar 

  75. A. Rouzee, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Optical gratings induced by field-free alignment of molecules,” Phys. Rev. A 75, 013419 (2007).

    Article  ADS  Google Scholar 

  76. E. Péronne, M. D. Poulsen, C. Z. Bisgaard, H. Stapelfeldt, and T. Seideman, “Nonadiabatic alignment of asymmetric top molecules: Field-free alignment of iodobenzene,” Phys. Rev. Lett. 91, 043003 (2003).

    Article  ADS  Google Scholar 

  77. E. Hamilton, T. Seideman, T. Ejdrup, M. D. Poulsen, C. Z. Bisgaard, S. S. Viftrup, and H. Stapelfeldt, “Alignment of symmetric top molecules by short laser pulses,” Phys. Rev. A 72, 043402 (2005).

    Article  ADS  Google Scholar 

  78. J. G. Underwood, B. J. Sussman, and A. Stolow, “Field-free three dimensional molecular axis alignment,” Phys. Rev. Lett. 94, 143002 (2005).

    Article  ADS  Google Scholar 

  79. T. Seideman, “On the dynamics of rotationally broad, spatially aligned wave packets,” J. Chem. Phys. 115, 5965 (2001).

    Article  ADS  Google Scholar 

  80. M. J. Vrakking and S. Stolte, “Coherent control of molecular orientation,” Chem. Phys. Lett. 271, 209 (1997).

    Article  ADS  Google Scholar 

  81. A. Rouzée, V. Renard, B. Lavorel, and O. Faucher, “Laser spatial profile effects in measurements of impulsive molecular alignment,” J. Phys. B 38, 2329 (2005).

    Article  ADS  Google Scholar 

  82. J. Ortigoso, M. Rodriguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870 (1999).

    Article  ADS  Google Scholar 

  83. B. Friedrich and D. Herschbach, “Alignment and trap** of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623 (1995).

    Article  ADS  Google Scholar 

  84. K. Hoshina, K. Yamanouchi, T. Ohshima, Y. Ose, and H. Todokoro, “Alignment of CS2 in intense nanosecond laser fields probed by pulsed gas electron diffraction,” J. Chem. Phys. 118, 6211 (2003).

    Article  ADS  Google Scholar 

  85. J. Houzet, E. Hertz, F. Billard, B. Lavorel, and O. Faucher, “Molecular alignment allows low-order harmonic generation by circular light in a gas,” Phys. Rev. A 88, 023859 (2013).

    Article  ADS  Google Scholar 

  86. T. Vieillard, F. Chaussard, F. Billard, D. Sugny, O. Faucher, S. Ivanov, J.-M. Hartmann, C. Boulet, and B. Lavorel, “Field-free molecular alignment for probing collisional relaxation dynamics,” Phys. Rev. A 87, 023409 (2013).

    Article  ADS  Google Scholar 

  87. M. Z. Hoque, M. Lapert, E. Hertz, F. Billard, D. Sugny, B. Lavorel, and O. Faucher, “Observation of laser-induced field-free permanent planar alignment of molecules,” Phys. Rev. A 84, 013409 (2011).

    Article  ADS  Google Scholar 

  88. B. Lavorel, O. Faucher, M. Morgen, and R. Chaux, “Analysis of femtosecond Raman-induced polarization spectroscopy (RIPS) in N2 and CO2 by fitting and scaling laws,” J. Raman spectrosc. 31, 77 (2000).

    Article  ADS  Google Scholar 

  89. G. Karras, E. Hertz, F. Billard, B. Lavorel, J.-M. Hartmann, O. Faucher, E. Gershnabel, Y. Prior, and I. S. Averbukh, “Orientation and alignment echoes,” Phys. Rev. Lett. 114, 153601 (2015).

    Article  ADS  Google Scholar 

  90. NIST Chemistry webbook, NIST standard reference database No. 69, Ed. by P. J. Linstrom and W. Mallard (2001).

  91. K. M. Gough, M. M. Yacowar, R. H. Cleve, and J. R. Dwyer, “Analysis of molecular polarizabilities and polarizability derivatives in H2, N2, F2, CO, and HF, with the theory of atoms in molecules,” Can. J. Chem. 74, 1139 (1996).

    Article  Google Scholar 

  92. S. Nir, S. Adams, and R. Rein, “Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide,” J. Chem. Phys. 59, 3341 (1973).

    Article  ADS  Google Scholar 

  93. F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8b (1937).

    Article  Google Scholar 

  94. M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc., Faraday Trans. 1 74, 3008 (1978).

    Article  Google Scholar 

  95. G. Alms, A. Burnham, and W. Flygare, “Measurement of the dispersion in polarizability anisotropies,” J. Chem. Phys. 63, 3321 (1975).

    Article  ADS  Google Scholar 

  96. M. Dantus, R. Bowman, and A. Zewail, “Femtosecond laser observations of molecular vibration and rotation,” Nature 343, 737 (1990).

    Article  ADS  Google Scholar 

  97. I. N. Levine, “Phase rule, phase diagrams,” in Physical Chemistry (MacGraw-Hill, New York, 1995), 4th ed.

    Google Scholar 

  98. M. A. Morrison and P. J. Hay, “Ab initio static polarisabilities of N2 and linear symmetric CO2 in the Hartree–Fock approximation: Variation with internuclear separation,” J. Phys. B 10, L647 (1977).

    Article  ADS  Google Scholar 

  99. M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc., Faraday Trans. 1 74, 3008 (1978).

    Article  Google Scholar 

  100. F. Buckley and A. A. Maryott, Tables of dielectric constants and electric dipole moments of substances in the gaseous state (National Bureau of Standards, Washington DC, 1953).

    Google Scholar 

  101. G. R. Alms, A. Burnham, and W. H. Flygare, “Measurement of the dispersion in polarizability anisotropies,” J. Chem. Phys. 63, 3321 (1975).

    Article  ADS  Google Scholar 

  102. H. Sekino and R. J. Bartlett, “Molecular hyperpolarizabilities,” J. Chem. Phys. 98, 3022 (1993).

    Article  ADS  Google Scholar 

  103. F. Baas and K. van den Hout, “Measurements of depolarization ratios and polarizability anisotropies of gaseous molecules,” Phys. A (Amsterdam, Neth.) 95, 597 (1979).

    Article  ADS  Google Scholar 

  104. K. J. Miller, “Calculation of the molecular polarizability tensor,” J. Am. Chem. Soc. 112, 8543 (1990).

    Article  Google Scholar 

  105. C. Asawaroengchai and G. M. Rosenblatt, “Rotational Raman intensities and the measured change with internuclear distance of the polarizability anisotropy of H2, D2, N2, O2, and CO,” J. Chem. Phys. 72, 2664 (1980).

    Article  ADS  Google Scholar 

  106. G. Maroulis and A. Haskopoulos, “Interaction induced dipole moment and polarizability in CO2–Rg, Rg=He, Ne, Ar, Kr and Xe,” Chem. Phys. Lett. 349, 335 (2001).

    Article  ADS  MATH  Google Scholar 

  107. U. Hohm, “Dispersion of polarizability anisotropy of H2, O2, N2O, CO2, NH3, C2H6, and cyclo-C3H6 and evaluation of isotropic and anisotropic dispersioninteraction energy coefficients,” Chem. Phys. 179, 533 (1994).

    Article  Google Scholar 

  108. D. S. Elliott and J. F. Ward, “Polarizability Anisotropies of CO2, N2O, and OCS from measurements of the intensity-dependent refractive index in gases,” Phys. Rev. Lett. 46, 317 (1981).

    Article  ADS  Google Scholar 

  109. M. L. Guennec, K. Evain, and B. Illien, “Calculation of static mean polarisability and polarisability anisotropy. Statistical comparison with the results of gases and influence of the geometrical parameters,” J. Mol. Struct.: THEOCHEM 542, 167 (2001).

    Article  Google Scholar 

  110. J. N. Watson, I. E. Craven, and G. L. Ritchie, “Temperature dependence of electric field-gradient induced birefringence in carbon dioxide and carbon disulfide,” Chem. Phys. Lett. 274, 1 (1997).

    Article  ADS  Google Scholar 

  111. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66 (2016).

    Article  ADS  Google Scholar 

  112. A. P. Pati, I. S. Wahyutama, and A. N. Pfeiffer, “Subcycle-resolved probe retardation in strong-field pumped dielectrics,” Nature Commun. 6 (2015). doi doi 10.1038/ncomms8746

  113. A. Sommer, E. Bothschafter, S. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V. S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, and F. Krausz, “Attosecond nonlinear polarization and light–matter energy transfer in solids,” Nature 534, 86 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Babilotte.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babilotte, P. Two Color Pump-Probe Dichroism and Birefringence Measurements in Atmospheric Molecules. Atmos Ocean Opt 31, 346–357 (2018). https://doi.org/10.1134/S1024856018040036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018040036

Keywords

Navigation