Log in

Linear Dichroism and Birefringence of Probe Radiation in Pump-Probe Spectroscopy of Polyatomic Molecules

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The dichroism and birefringence effects in excited states of polyatomic molecules upon excitation by two successive femtosecond pulses have been studied theoretically as a function of the delay time between the pulses. General expressions have been derived describing the change of the intensity and polarization of the probe pulse after transmission through a solution of arbitrary polyatomic molecules for any initial polarization of each of the laser pulses. The expressions were written in terms of spherical tensor operators and took into account the coherence of vibrational molecular excited states and their population due to vibrational relaxation, rotational diffusion, and radiative transitions. The expressions contain contributions from linear dichroism and birefringence in the molecular excited states. It was shown that, under certain conditions, both effects can be observed simultaneously. The geometry of almost collinear propagation of the pump and probe pulses through the molecular sample was considered, and it was shown that the contributions from linear dichroism and birefringence to the signal can be completely separated in the experiment by means of an appropriate choice of a probe beam polarization analyzer placed in front of the photodetector. The expressions obtained were used to describe the signals obtained using the polarization-modulation technique developed recently by the authors (Gorbunova et al, Phys. Chem. Chem. Phys. 2020, Vol. 22, 18155–18168). It was shown that the modulated dichroism and birefringence signals could be observed in quadrature to the second harmonic of the modulated reference signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  2. R. Berera, R. van Grondelle, and J. T. M. Kennis, Photosynth. Res. 101, 105 (2009). https://doi.org/10.1007/s11120-009-9454-y

    Article  Google Scholar 

  3. R. W. Boyd, Nonlinear Optics (Elsevier, Academic, Rochester, 2020).

    Google Scholar 

  4. B. Cohen, P. M. Hare, and B. Kohler, J. Am. Chem. Soc. 125, 13594 (2003). https://doi.org/10.1021/ja035628z

    Article  Google Scholar 

  5. G. M. Roberts, H. J. B. Marroux, M. P. Grubb, M. N. R. Ashfold, and A. J. Orr-Ewing, J. Phys. Chem. A 118, 11211 (2014). https://doi.org/10.1021/jp508501w

    Article  Google Scholar 

  6. Z. Heiner, T. Roland, J. Léonard, S. Haacke, and G. I. Groma, J. Phys. Chem. B 121, 8037 (2017). https://doi.org/10.1021/acs.jpcb.7b04753

    Article  Google Scholar 

  7. J. R. Lakowicz, Topics in Fluorescence Spectroscopy (Plenum, New York, 1997), Vol. 5.

    Google Scholar 

  8. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, J. Biol. Chem. 208, 25119 (2005). https://doi.org/10.1074/jbc.M502475200

    Article  Google Scholar 

  9. T. S. Blacker, R. J. Marsh, M. R. Duchen, and A. J. Bain, Chem. Phys. 422, 184 (2013). https://doi.org/10.1016/j.chemphys.2013.02.019

    Article  Google Scholar 

  10. S. Herbrich, T. Al-Hadhuri, K.-H. Gericke, P. S. Shternin, A. G. Smolin, and O. S. Vasyutinskii, J. Chem. Phys. 142 (2) (2015). https://doi.org/10.1063/1.4905140

  11. M. E. Sasin, A. G. Smolin, K.-H. Gericke, E. Tokunaga, and O. S. Vasyutinskii, Phys. Chem. Chem. Phys. 20, 19922 (2018). https://doi.org/10.1039/C8CP02708K

    Article  Google Scholar 

  12. I. A. Gorbunova, M. E. Sasin, J. Rubayo-Soneira, A. G. Smolin, and O. S. Vasyutinskii, J. Phys. Chem. B 124, 10682 (2020). https://doi.org/10.1021/acs.jpcb.0c07620

    Article  Google Scholar 

  13. H.-S. Tan, I. R. Piletic, and M. D. Fayer, J. Opt. Soc. Am. B 22, 2009 (2005). https://doi.org/10.1364/JOSAB.22.002009

    Article  ADS  Google Scholar 

  14. D. A. Farrow, W. Qian, E. R. Smith, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 128, 144510 (2008). https://doi.org/10.1063/1.2837471

    Article  ADS  Google Scholar 

  15. E. E. Fenn, D. B. Wong, and M. D. Fayer, Proc. Natl. Acad. Sci. U. S. A. 106, 15243 (2009). https://doi.org/10.1073/pnas.0907875106

    Article  ADS  Google Scholar 

  16. E. R. Smith and D. M. Jonas, J. Phys. Chem. A 115, 4101 (2011). https://doi.org/10.1021/jp201928s

    Article  Google Scholar 

  17. M. E. Corrales, P. S. Shternin, L. Rubio-Lago, R. de Nalda, O. S. Vasyutinskii, and L. Banares, J. Phys. Chem. Lett. 7, 4458 (2016). https://doi.org/10.1021/acs.jpclett.6b01874

    Article  Google Scholar 

  18. C. Rumble and E. Vauthey, Phys. Chem. Chem. Phys. 21, 11797 (2019). https://doi.org/10.1039/C9CP00795D

    Article  Google Scholar 

  19. J. Hunger, S. Roy, M. Grechko, and M. Bonn, J. Phys. Chem. B 123, 1831 (2019). https://doi.org/10.1021/acs.jpcb.8b10849

    Article  Google Scholar 

  20. I. A. Gorbunova, M. E. Sasin, and O. S. Vasyutinskii, Tech. Phys. Lett. 46, 158 (2020). https://doi.org/10.1134/S1063785020020212

    Article  ADS  Google Scholar 

  21. I. A. Gorbunova, M. E. Sasin, Ya. M. Beltukov, A. A. Semenov, and O. S. Vasyutinskii, Phys. Chem. Chem. Phys. 22, 18155 (2020). https://doi.org/10.1039/D0CP02496A

    Article  Google Scholar 

  22. S. Denicke, K.-H. Gericke, A. G. Smolin, P. S. Shter-nin, and O. S. Vasyutinskii, J. Phys. Chem. A 114, 9681 (2010). https://doi.org/10.1021/jp101403x

    Article  Google Scholar 

  23. P. M. Schaefer, S. Kalinina, A. Rueck, C. A. F. von Arnim, and B. von Einem, Cytometry, Part A 95, 34 (2019). https://doi.org/10.1002/cyto.a.23597

    Article  Google Scholar 

  24. D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981). https://doi.org/10.1063/1.441491

    Article  ADS  Google Scholar 

  25. A. Zeug, I. Rückmann, and B. Röder, J. Opt. B: Quantum Semiclass. Opt. 3, 251 (2001). https://doi.org/10.1088/1464-4266/3/2/377

    Article  ADS  Google Scholar 

  26. G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, J. Chem. Phys. 119, 464 (2003). https://doi.org/10.1063/1.1578056

    Article  ADS  Google Scholar 

  27. B. Lavorel, Ph. Babilotte, G. Karras, F. Billard, E. Hertz, and O. Faucher, Phys. Rev. A 94, 043422 (2016). https://doi.org/10.1103/PhysRevA.94.043422

    Article  ADS  Google Scholar 

  28. B. V. Picheyev, A. G. Smolin, and O. S. Vasyutinskii, J. Phys. Chem. A 101, 7614 (1997). https://doi.org/10.1021/jp971287y

    Article  Google Scholar 

  29. C. Cohen-Tannoudji and F. Laloë, J. Phys. 28, 505 (1967). https://doi.org/10.1051/jphys:01967002808-9072200/pdf

    Article  Google Scholar 

  30. W. Happer, Rev. Mod. Phys. 44, 169 (1972). https://doi.org/10.1103/RevModPhys.44.169

    Article  ADS  Google Scholar 

  31. R. N. Zare, Angular Momentum (Wiley, New York, 1988).

    Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, London, 1977; Nauka, Moscow, 1989).

  33. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientifc, New York, 1988; Nauka, 1975).

  34. P. S. Shternin, K.-H. Gericke, and O. S. Vasyutinskii, Mol. Phys. 108, 813 (2010). https://doi.org/10.1080/00268970903379221

    Article  ADS  Google Scholar 

  35. E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Nauka, Moscow, 1991; Springer, New York, 1993).

  36. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (D. van Nostrand, Princeton, NJ, 1950).

    Google Scholar 

Download references

Funding

This work was supported by the Basis Foundation, grant no. 19-1-1-13-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Vasyutinskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semak, B.V., Vasyutinskii, O.S. Linear Dichroism and Birefringence of Probe Radiation in Pump-Probe Spectroscopy of Polyatomic Molecules. Opt. Spectrosc. 129, 1007–1017 (2021). https://doi.org/10.1134/S0030400X21070171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21070171

Keywords:

Navigation