Log in

Quantify the response of purslane plant growth, photosynthesis pigments and photosystem II photochemistry to cadmium concentration gradients in the soil

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The cadmium (Cd), being a widespread soils pollutant and one of the most toxic heavy metals in the environment, adversely affects sustainable crop production and food safety. Pot experiment was conducted to quantify and simulate the response of purslane (Portulaca oleracea L.) plants to Cd toxicity. The purslane germinated seeds were cultivated in twelve Cd concentrations (from 0 to 300 mg/kg of Cd in soil) for six weeks and then some growth characteristics, photosynthesis pigments, and chlorophyll a fluorescence parameters were measured. The influence of Cd gradients in the soil on all growth parameters, photosynthesis pigments and chlorophyll a fluorescence parameters (except F m and carotenoid content) were described by a segmented model. Furthermore, F m and carotenoid contents were fitted to a linear model. The growth characteristics, chlorophyll content, photosynthetic pigments and some parameters of chlorophyll a fluorescence such as F v, F v/F m, Y(II) and ETR decreased when Cd concentration increased. In contrast, F 0, Y(NPQ) and Y(NO) increased and F m was not significantly affected. In general, most variations in the studied parameters were recorded with low concentrations of cadmium, which ranged from 0 to 125 mg/kg. Also, the growth characteristics (especially stem, leaf, and shoot dry weights) were more sensitive to Cd contamination than other parameters. Moreover, among chlorophyll fluorescence parameters, Y(NPQ) was the most sensitive to Cd concentration gradients in the soil that can be due to disturbances of antennae complex of PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ETR:

electron transport rate

F 0 :

minimum fluorescence of dark sample

F m :

maximum fluorescence of dark sample

F v :

variable fluorescence

F v/F m :

maximum photochemical quantum yield of PSII

F 0 :

minimum fluorescence of illuminated sample

F m :

maximum fluorescence of illuminated sample

F t :

steady state fluorescence

Y(II):

effective photochemical quantum yield of PSII

Y(NPQ):

quantum yield of regulated energy dissipation

Y(NO):

quantum yield of non-regulated energy dissipation

References

  1. Gaur, A. and Adholeya, A., Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils, Curr. Sci., 2004, vol. 86, pp. 528–534.

    CAS  Google Scholar 

  2. Fusconi, A., Repetto, O., Bona, E., Massa, N., Gallo, C., Dumas-Gaudot, E., and Berta, G., Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings, Environ. Exp. Bot.., 2006, vol. 58, pp. 253–260.

    Article  CAS  Google Scholar 

  3. Moustakas, N.K., Akoumianaki-Ioannidou, A., and Barouchas, P.E., The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.), Aust. J. Crop Sci.., 2011, vol. 5, pp. 277–282.

    CAS  Google Scholar 

  4. Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., and Mahvi, H., Effect of fertilizer application on soil heavy metal concentration, Environ. Monit. Assess., 2010, vol. 160, pp. 83–89.

    Article  CAS  PubMed  Google Scholar 

  5. Rivera-Becerril, F., Calantzis, C., Turnau, K., Caussanel, J.P., Belimov, A.A., Gianinazzi, S., Strasser, R.J., and Gianinazzi-Pearson, V., Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes, J. Exp. Bot.., 2002, vol. 53, pp. 1177–1185.

    Article  CAS  PubMed  Google Scholar 

  6. Celeste M., Dias, M., Monteiro, C., Moutinho-Pereira, J., Correia, C., Goncalves, B., and Santos, C., Cadmium toxicity affects photosynthesis and plant growth at different levels, Acta Physiol. Plant., 2013, vol. 35, pp. 1281–1289.

    Article  Google Scholar 

  7. Li, S., Yang, W., Yang, T., Chen, W., and Ni, Y., Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi–a cadmium accumulating plant, Int. J. Phytoremediation., 2015, vol. 17, pp. 85–92.

    Article  CAS  PubMed  Google Scholar 

  8. Xue, Z.C., Gao, H.Y., and Zhang, L.T., Effects of cadmium on growth, photosynthetic rate, and chlorophyll content in leaves of soybean seedlings, Biol. Plant., 2013, vol. 57, pp. 587–590.

    Article  CAS  Google Scholar 

  9. Shahabivand, S., Maivan, H.Z., Goltapeh, E.M., Sharifi, M., and Aliloo, A.A., The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity, Plant Physiol. Biochem., 2012, vol. 60, pp. 53–58.

    Article  CAS  PubMed  Google Scholar 

  10. Correa, A.D.R., Rorig, L.R., Verdinelli, M.A., Cotelle, S., Ferard, J.F., and Radetski, C.M., Cadmium phytotoxicity: quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers, Sci. Total Environ., 2006, vol. 357, pp. 120–127.

    Article  CAS  Google Scholar 

  11. Sandalio, L.M., Dalurzo, H.C., Gomez, M., RomeroPuertas, M.C., and del Rio, L.A., Cadmium-induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 2001, vol. 52, pp. 2115–2126.

    CAS  PubMed  Google Scholar 

  12. Baker, N.R., Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 89–113.

    Article  CAS  PubMed  Google Scholar 

  13. Li, Q.M., Liu, B.B., Wu, Y., and Zou, Z.R., Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings, J. Integr. Plant Biol., 2008, vol. 50, pp. 1307–1317.

    Article  PubMed  Google Scholar 

  14. He, J.Y., Ren, Y.F., Zhu, C., Yan, Y.P., and Jiang, D.A., Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice, Photosynthesis., 2008, vol. 46, pp. 466–470.

    Article  CAS  Google Scholar 

  15. Lopez-Millan, A.F., Sagardoy, R., Solanas, M., Abadia, A., and Abadia, J., Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics, Environ. Exp. Bot., 2009, vol. 65, pp. 376–385.

    Article  CAS  Google Scholar 

  16. Liu, L., Howe, P., Zhou, Y.F., Xu, Z.Q., Hocart, C., and Zhang, R., Fatty acids and beta-carotene in Australian purslane (P. oleracea) varieties, J. Chromatogr., A., 2000, vol. 893, pp. 207–213.

    CAS  Google Scholar 

  17. Carvalho, I.S., Teixeira, M., and Brodelius, M., Effect of salt stress on purslane and potential health benefits: oxalic acid and fatty acids profile, Proc. Int. Plant Nutr. Colloq. XVI (University of California, Davis), 2009, https://escholarshiporg/uc/item/4cc78714

    Google Scholar 

  18. Teixeira, M. and Carvalho, I.S., Effects of salt stress on purslane (Portulaca oleracea) nutrition, Ann. Appl. Biol., 2009, vol. 154, pp. 77–86.

    Article  CAS  Google Scholar 

  19. Dwivedi, S., Mishra, A., Kumar, A., Tripathi, P., Dave, R., Dixit, G., Tiwari, K.K., Srivastava, S., Shukla, M.K., and Tripathi, R.D., Bioremediation potential of genus Portulaca L. collected from industrial areas in Vadodara, Gujarat, India, Clean Techn. Environ. Policy., 2012, vol. 14, pp. 223–228.

    Article  CAS  Google Scholar 

  20. Lichtenthaler, H.K. and Buschmann, C., Chlorophylls and carotenoids measurement and characterization by UV-VIS spectroscopy, Curr. Protoc. Food Analyt. Chem., 2001, pp. F4.3.1–F4.3.8. doi 10.1002/0471142913faf0403s01

    Google Scholar 

  21. Genty, B., Briantais, J.M., and Baker, N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta., 1989, vol. 99, pp. 87–92.

    Article  Google Scholar 

  22. Schreiber, U., Schliwa, U., and Bilger, W., Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res., 1986, vol. 10, pp. 51–62.

    Article  CAS  PubMed  Google Scholar 

  23. Klughammer, Ch. and Schreiber, U., Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method, PAM Appl. Notes, 2008, vol. 1, pp. 27–35.

    Google Scholar 

  24. SAS/STAT User’s Guide, Cary, NC: SAS Inst., 2004.

  25. Bakhshandeh, E., Soltani, A., Zeinali, E., and KallateArabi, M., Prediction of plant height by allometric relationships in field-grown wheat, Cereal Res. Commun., 2012, vol. 40, pp. 487–496.

    Article  Google Scholar 

  26. Naz, A., Khan, S., Qasim, M., Khalid, S., Muhammad, S., and Tariq, M., Metals toxicity and its bioaccumulation in purslane seedlings grown in controlled environment, Nat. Sci., 2013, vol. 5, pp. 573–579.

    Google Scholar 

  27. Chen, X., Wang, J., Shi, Y., Zhao, M.Q., and Chi, G.Y., Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard, Bot. Stud., 2011, vol. 52, pp. 41–46.

    CAS  Google Scholar 

  28. Oliveira, J.A., Oliva, M.A., and Cambraia, J., Effects of cadmium on growth photosynthetic rate, and chlorophyll contents and on peroxidase activity in soybean, R. Bras. Fisiol. Veg., 1994, vol. 6, pp. 97–101.

    CAS  Google Scholar 

  29. Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence–a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.

    Article  CAS  PubMed  Google Scholar 

  30. Kramer, D.M., Johnson, G., Kiirats, O., and Edwards, G.E., New fluorescence parameters for the determination of QA redox state and excitation energy fluxes, Photosynth. Res., 2004, vol. 79, pp. 209–218.

    Article  CAS  PubMed  Google Scholar 

  31. Flexas, J., Briantais, J.M., Cerovic, Z., Medrano, H., and Moya, I., Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system, Remote Sens. Environ., 2000, vol. 73, pp. 283–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pirdashti.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubian, Y., Siadat, S.A., Moradi Telavat, M.R. et al. Quantify the response of purslane plant growth, photosynthesis pigments and photosystem II photochemistry to cadmium concentration gradients in the soil. Russ J Plant Physiol 63, 77–84 (2016). https://doi.org/10.1134/S1021443716010180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716010180

Keywords

Navigation