Log in

Cadmium accumulation and growth response to cadmium stress of eighteen plant species

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the cadmium (Cd) accumulation and growth response to Cd stress of 18 plant species. After growth for 30 days in the sand containing 0, 2, or 10 mg Cd kg−1, seedlings were evaluated for growth parameters, specific root length, and Cd accumulation. The 18 species differ greatly in Cd accumulation and resistance to Cd stress, depending on Cd concentrations in the sand. Under high Cd condition (10 mg kg−1), the 18 species were classified into two groups: (1) Indian mustard and rapeseed having high Cd tolerance and increased accumulation capacity in shoots could be considered as Cd accumulators, and (2) the remaining 16 non-accumulators constitute a species continuum from the indicators to excluders. Shoot Cd concentration showed exponential decay relationships with biomass production, absolute growth rate, and growth ratio, indicating that biomass production negatively relates to the shoot Cd concentration in non-accumulators via dilution or concentration effect. Species with high biomass generally accumulate low Cd in the shoots and display high Cd-tolerant capacity. Indian mustard and rapeseed are promising species for long-term phytoextraction of Cd-contaminated farmlands for bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytorem 14:772–785

    Article  CAS  Google Scholar 

  • Bhadkariya RK, Jain VK, Chak GPS, Gupta SK (2014) Remediation of cadmium by Indian mustard (Brassica juncea L.) from cadmium contaminated soil: a phytoextraction study. Int J Environ 3:229–237

    Article  Google Scholar 

  • Blum WH (1997) Cadmium uptake by higher plants. In: Proceedings of extended abstracts from the Fourth International Conference on the Biogeochemistry of Trace Elements, University of California, Berkeley, pp 109–110

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    Article  CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    Article  Google Scholar 

  • Chunilall V, Kindness A, Jonnalagadda SB (2004) Heavy metal uptake by spinach leaves grown on contaminated soils with lead, mercury, cadmium, and nickel. J Environ Sci Health B 39:473–481

    Article  CAS  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  Google Scholar 

  • Egan K, Hambridge T, Kayama F (2006) Cadmium-impact assessment of different maximum limits. Safety evaluation of certain food additives. WHO Food Additives Series 157–203

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • Fu X, Dou C, Chen Y, Chen X, Shi J, Yu M, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytorem 17:583–588

    Article  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  CAS  Google Scholar 

  • Gwóźdź EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plantarum 19:459–465

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press Inc., New York

    Google Scholar 

  • Li P, Wang X, Allinson G, Li X, **ong X (2009) Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J Hazard Mater 161:516–521

    Article  CAS  Google Scholar 

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crop Prod 16:33–42

    Article  CAS  Google Scholar 

  • Liu J, Zhou Q, Wang X, Zhang Q, Sun T (2006) Potential analysis of ornamental plant resources applied to contaminated soil remediation. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Global Science Books, London, pp. 245–252

    Google Scholar 

  • Lu Z, Zhang Z, Su Y, Liu C, Shi G (2013) Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol Environ Saf 91:147–155

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • McVetty PBE, Duncan RW (2015) Canola, rapeseed, and mustard: for biofuels and bioproducts. In: Cruz VMW, Dierig DA (eds) Industrial Crops. Springer, New York, pp. 133–156

    Google Scholar 

  • Ministry of Health of the People’s Republic of China and Standardization Administration of China (2012) Maximum levels of contaminants in foods. GB2762–2012

  • Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23:769–782

    Article  CAS  Google Scholar 

  • Paine C, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol Evol 3:245–256

    Article  Google Scholar 

  • Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in **angxi area, China. J Environ Sci Health A 41:65–76

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Sabreen S, Sugiyama S (2008) Trade-off between cadmium tolerance and relative growth rate in 10 grass species. Environ Exp Bot 63:327–332

    Article  CAS  Google Scholar 

  • Salaskar D, Shrivastava M, Kale SP (2011) Bioremediation potential of spinach (Spinacia oleracea L.) for decontamination of cadmium in soil. Curr Sci 101:1359–1363

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  Google Scholar 

  • Salt DE, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    Article  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  CAS  Google Scholar 

  • Shi G, Liu C, Cai Q, Liu Q, Hou C (2010) Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bull Environ Contam Toxicol 85:256–263

    Article  CAS  Google Scholar 

  • Shi G, Liu C, Cui M, Ma Y, Cai Q (2011) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol 168:163–173

    Article  Google Scholar 

  • Shi G, Su G, Lu Z, Liu C, Wang X (2014) Relationship between biomass, seed components and seed Cd concentration in various peanut (Arachis hypogaea L.) cultivars grown on Cd-contaminated soils. Ecotoxicol Environ Saf 110:174–181

    Article  CAS  Google Scholar 

  • Stingu A, Volf I, Popa VI, Gostin I (2012) New approaches concerning the utilization of natural amendments in cadmium phytoremediation. Ind Crop Prod 35:53–60

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    Article  CAS  Google Scholar 

  • Turan M, Esringü A (2007) Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ 53:7–15

    Article  CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:1–8

    Article  Google Scholar 

  • Wang S, Liu J (2014) The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Environ Monit Assess 186:751–759

    Article  CAS  Google Scholar 

  • Wang J, Fang W, Yang Z, Yuan J, Zhu Y, Yu H (2007) Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. J Agric Food Chem 55:9118–9123

    Article  CAS  Google Scholar 

  • Wilkes MA, Takei I, Caldwell RA, Trethowan RM (2013) The effect of genotype and environment on biodiesel quality prepared from Indian mustard (Brassica juncea) grown in Australia. Ind Crop Prod 48:124–132

    Article  CAS  Google Scholar 

  • **a S, Wang X, Su G, Shi G (2015) Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil. Environ Sci Pollut Res 22:18707–18717

    Article  CAS  Google Scholar 

  • **n J, Huang B, Liu A, Zhou W, Liao K (2013) Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil: uptake and redistribution to the edible plant parts. Plant Soil 373:415–425

    Article  CAS  Google Scholar 

  • Yang Y, Zhang FS, Li HF, Jiang RF (2009) Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J Environ Manag 90:1117–1122

    Article  CAS  Google Scholar 

  • Zhu Y, Yu H, Wang J, Fang W, Yuan J, Yang Z (2007) Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn. J Agric Food Chem 55:1045–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31370515) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Shi.

Ethics declarations

Ethical statement

The authors declare no ethical issues for this manuscript.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., **a, S., Liu, C. et al. Cadmium accumulation and growth response to cadmium stress of eighteen plant species. Environ Sci Pollut Res 23, 23071–23080 (2016). https://doi.org/10.1007/s11356-016-7545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7545-9

Keywords

Navigation