Log in

Effects of Acoustic Context on the Perceptual Differences between Spatial Sound Stimuli

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

We studied the effects of the acoustic context on active and passive discrimination of moving sound signals. Different contexts were created by reversing the role of standard and deviant stimuli in the oddball blocks, while their acoustical features were kept the same. Three types of sounds were used as standard or deviant stimuli in different blocks: stationary midline noises and two (smooth and abrupt) moving sounds moving to the left or right of the midline. Auditory event-related potentials (ERPs) were recorded during passive listening (the sound stimulation ignored), and mismatch negativity potentials (MMNs) were obtained. Active discrimination of sound movements was measured by the hit rate (percent correct responses) and false alarm rate, as well as the reaction time. The influence of the stimulus context on active and passive discrimination of the moving sound stimuli was reflected in the phenomenon known as the effect of deviance direction. The hit rate and MMN amplitude were higher when the deviant moved faster than the standard. The MMN amplitude was more responsive to the velocity of sound stimuli than the hit rate and false alarm rate. The psychophysical measurements in the reversed contexts suggest that smooth and abrupt sound movements may belong to the same perceptual category (moving sounds), while the stationary stimuli form another perceptual category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Näätänen, R., Paavilainen, P., Rinne, T., and Alho, K., The mismatch negativity (MMN) in basic research of auditory processing: a review, Clin. Neurophysiol., 2007, vol. 118, p. 2544.

    Article  PubMed  Google Scholar 

  2. Al’tman, Ya.A., Vaitulevich, S.F., Shestopalova, L.B., et al., Total electric potentials of human brain in spatial hearing, Usp. Fiziol. Nauk, 2012, vol. 43, no. 2, p.3.

    PubMed  Google Scholar 

  3. Deouell, L.Y., Parnes, A., Pickard, N., and Knight, R., Spatial locations accurately tracked by human auditory sensory memory: evidence from the mismatch negativity, Eur. J. Neurosci., 2006, vol. 24, p. 1488.

    Article  PubMed  Google Scholar 

  4. Nager, W., Kohlmetz, C., Joppich, G., et al., Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in human, Neurosci. Lett., 2003, vol. 344, p.181.

    Article  CAS  PubMed  Google Scholar 

  5. Paavilainen, P., Karlsson, M.L., Reinikainen, K., and Näätänen, R. Mismatch negativity to change in spatial location of an auditory stimulus, Electroencephalogr. Clin. Neurophysiol., 1989, vol. 73, p.129.

    Article  CAS  PubMed  Google Scholar 

  6. Pakarainen, S., Takegata, R., Rinne, T., et al., Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP), Clin. Neurophysiol., 2007, vol. 118, p.177.

    Article  Google Scholar 

  7. Richter, N., Schröger, E., and Rübsamen, R., Hemispheric specialization during discrimination of sound sources reflected by MMN, Neuropsychologia, 2009, vol. 47, p. 2652.

    Article  PubMed  Google Scholar 

  8. Schröger, E., Interaural time and level differences: integrated or separated processing? Hear. Res., 1996, vol. 96, p.191.

    Article  PubMed  Google Scholar 

  9. Altman, J.A., Vaitulevich, S.Ph., Petropavlovskaia, E.A., and Shestopalova, L.B., Discrimination of the dynamic properties of sound source spatial location in humans: electrophysiology and psychophysics, Hum. Physiol., 2010, vol. 36, no. 1, p.72.

    Article  Google Scholar 

  10. Vasilenko, Yu.A. and Shestopalova, L.B., Moving sound source discrimination in humans: Mismatch negativity and psychophysics, Hum. Physiol., 2010, vol. 36, no. 2, p.139.

    Article  Google Scholar 

  11. Altman, J.A., Vaitulevich, S.Ph., Shestopalova, L.B., and Petropavlovskaia, E.A., How does mismatch negativity reflect auditory motion? Hear. Res., 2010, vol. 268, p.194.

    Article  CAS  PubMed  Google Scholar 

  12. Shestopalova, L.B., Petropavlovskaia, E.A., Vaitulevich, S.Ph., et al., Discrimination of auditory motion patterns: the mismatch negativity study, Neuropsychologia, 2012, vol. 50, p. 2720. http://dx.doi.org/10.1016/j.neuropsychologia.2012.07.043

    Article  CAS  PubMed  Google Scholar 

  13. Shestopalova, L.B., Petropavlovskaia, E.A., Vaitulevich, S.P., and Nikitin, N.I., Perceptual categories for auditory motion as reflected in mismatch negativity, Hum. Physiol., 2013, vol. 39, no. 2, p.209.

    Article  Google Scholar 

  14. Bertoli, S., Heimberg, S., Smurzynski, J., and Probst, R., Mismatch negativity and psychoacoustic measures of gap detection in normally hearing subjects, Psychophysiology, 2001, vol. 38, p.334.

    Article  CAS  PubMed  Google Scholar 

  15. Pettigrew, C.M., Murdoch, B.E., Ponton, C.W., et al., Automatic auditory processing of English words as indexed by the mismatch negativity, using a multiple deviant paradigm, Ear Hear., 2004, vol. 25, p.284.

    PubMed  Google Scholar 

  16. Savela, J., Kujala, T., Tuomainen, J., et al., The mismatch negativity and reaction time as indices of the perceptual distance between the corresponding vowels of two related languages, Cognit. Brain Res., 2003, vol. 16, p.250.

    Article  Google Scholar 

  17. Tervaniemi, M., Just, V., Koelsch, S., et al., Pitch-discrimination accuracy in musicians vs. non-musicians: an event-related potential and behavioral study, Exp. Brain Res., 2005, vol. 161, p.1.

    Article  PubMed  Google Scholar 

  18. Kujala, T., Tervaniemi, M., and Schröger, E., The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations, Biol. Psychol., 2007, vol. 74, no. 1, p.1.

    Article  PubMed  Google Scholar 

  19. Jäkel, F. and Wichmann, F.A., Spatial four-alternative forced-choice method is the preferred psychophysiological method for naïve observers, J. Vision, 2006, vol. 6, p. 1307. doi 10.1167/6.11.13

    Article  Google Scholar 

  20. Sussman, E.S., Chen, S., Sussman-Fort, J., and Dinces, E., The five myths of MMN: redefining how to use MMN in basic and clinical research, Brain Topogr., 2014, vol. 27, no. 4, p. 553. doi 10.1007/s10548-013-0326-6

    Article  CAS  PubMed  Google Scholar 

  21. Kishon-Rabin, L., Roth, D.A., van Dijk, B., et al., Frequency discrimination thresholds: the effect of increment versus decrement detection of frequency, J. Basic Clin. Physiol. Pharmacol., 2004, vol. 15, p.29.

    PubMed  Google Scholar 

  22. Grimm, S., Escera, C., Slabu, L., and Costa-Faidella, J., Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain, Psychophysiology, 2011, vol. 48, p. 377. http://dx.doi.org/10.1111/j.1469-8986.2010. 01073.x

    Article  PubMed  Google Scholar 

  23. Jacobsen, T. and Schröger, E., Is there pre-attentive memory-based comparison of pitch? Psychophysiology, 2001, vol. 38, p.723.

    Article  CAS  PubMed  Google Scholar 

  24. Jacobsen, T. and Schröger, E., Measuring duration mismatch negativity, Clin. Neurophysiol., 2003, vol. 114, p. 1133.

    Article  PubMed  Google Scholar 

  25. Ruhnau, Ph., Herrmann, B., and Schröger, E., Finding the right control: the mismatch negativity under investigation, Clin. Neurophysiol., 2012, vol. 123, p. 507. http://dx.doi.org/10.1016/j.clinph.2011.07.035

    Article  PubMed  Google Scholar 

  26. Shestopalova, L.B., Petropavlovskaia, E.A., Vaitulevich, S.Ph., and Nikitin, N.I., Contextual effects on preattentive processing of sound motion as revealed by spatial MMN, Int. J. Psychophysiol., 2015, vol. 96, p. 49. http://dx.doi.org/10.1016/j.ijpsycho.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  27. Saberi, K. and Hafter, E.R., Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R.H. and Anderson, T.R., Eds., Mahwah, NJ: Erlbaum, 1997, p.315.

  28. Colin, C., Hoonhorst, I., Markessis, E., et al., Mismatch Negativity (MMN) evoked by sound duration contrasts: an unexpected major effect of deviance direction on amplitudes, Clin. Neurophysiol., 2009, vol. 120, p. 51. http://dx.doi.org/10.1016/j.clinph. 2008.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Okazaki, S., Kanoh, S.I., Takaura, K., et al., Change detection and difference detection of tone duration discrimination, Neuroreport, 2006, vol. 17, p.395.

    Article  PubMed  Google Scholar 

  30. Takegata, R., Tervaniemi, M., Alku, P., et al., Parameter-specific modulation of the mismatch negativity to duration decrement and increment: evidence for asymmetric processes, Clin. Neurophysiol., 2008, vol. 119, p. 1515. http://dx.doi.org/10.1016/j.clinph.2008.03.025

    Article  PubMed  Google Scholar 

  31. Peter, V., McArthur, G., and Thompson, W.F., Effect of deviance direction and calculation method on dura tion and frequency mismatch negativity (MMN), Neurosci. Lett., 2010, vol. 482, p. 71. http://dx.doi.org/10.1016/j.neulet.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  32. Karanasiou, I.S., Papageorgiou, C., Kyprianou, M., et al., Effect of frequency deviance direction on performance and mismatch negativity, J. Integr. Neurosci., 2011, vol. 10, no. 4, p.525.

    Article  PubMed  Google Scholar 

  33. Magezi, D.A. and Krumbholz, K., Evidence for opponent-channel coding of interaural time differences in human auditory cortex, J. Neurophysiol., 2010, vol. 104, p. 1997. http://dx.doi.org/10.1152/jn.00424.2009

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shestopalova, L.B., Petropavlovskaia, E.A., Vaitulevich, S.Ph., and Nikitin, N.I., Sensitivity of the hearing system to the velocity of auditory motion: discrimination thresholds and mismatch negativity, Hum. Physiol., 2015, vol. 41, no. 2, p.123.

    Article  CAS  Google Scholar 

  35. Grantham, D.W., Adaptation to auditory motion in the horizontal plane: effect of prior exposure to motion on motion detectability, Percept. Psychophys., 1992, vol. 52, no. 2, p.144.

    Article  CAS  PubMed  Google Scholar 

  36. Magezi, D.A., Buetler, K.A., Chouiter, L., et al., Electrical neuroimaging during auditory motion aftereffects reveals that auditory motion processing is motion sensitive but not direction selective, J. Neurophysiol., 2013, vol. 109, p. 321. http://dx.doi.org/10.1152/jn. 00625.2012

    Article  PubMed  Google Scholar 

  37. Grantham, D.W. and Wightman, F.L., Auditory motion aftereffects, Percept. Psychophys., 1979, vol. 26, no. 5, p.403.

    Article  CAS  PubMed  Google Scholar 

  38. Dong, Ch.-J., Swindale, N.V., Zakarauskas, P., et al., The auditory motion aftereffect: Its tuning and specificity in the spatial and frequency domains, Percept. Psychophys., 2000, vol. 62, no. 5, p. 1099.

    Article  CAS  PubMed  Google Scholar 

  39. Malone, B.J., Scott, B.H., and Semple, M.N., Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques, J. Neurosci., 2002, vol. 22, no. 11, p. 4625.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Shestopalova.

Additional information

Original Russian Text © L.B. Shestopalova, E.A. Petropavlovskaya, V.V. Semenova, N.I. Nikitin, S.Ph. Vaitulevich, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 6, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestopalova, L.B., Petropavlovskaya, E.A., Semenova, V.V. et al. Effects of Acoustic Context on the Perceptual Differences between Spatial Sound Stimuli. Hum Physiol 43, 607–616 (2017). https://doi.org/10.1134/S036211971706010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211971706010X

Keywords

Navigation