Log in

The Five Myths of MMN: Redefining How to Use MMN in Basic and Clinical Research

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The goal of this review article is to redefine what the mismatch negativity (MMN) component of event-related potentials reflects in auditory scene analysis, and to provide an overview of how the MMN serves as a valuable tool in Cognitive Neuroscience research. In doing so, some of the old beliefs (five common ‘myths’) about MMN will be dispelled, such as the notion that MMN is a simple feature discriminator and that attention itself modulates MMN elicitation. A revised description of what MMN truly reflects will be provided, which includes a principal focus onto the highly context-dependent nature of MMN elicitation and new terminology to discuss MMN and attention. This revised framework will help clarify what has been a long line of seemingly contradictory results from studies in which behavioral ability to hear differences between sounds and passive elicitation of MMN have been inconsistent. Understanding what MMN is will also benefit clinical research efforts by providing a new picture of how to design appropriate paradigms suited to various clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaltonen O, Niemi P, Nyrke T, Tuhkanen M (1987) Event-related brain potentials and the perception of a phonetic continuum. Biol Psychol 24(3):197–207

    CAS  PubMed  Google Scholar 

  • Aaltonen O, Tuomainen J, Laine M, Niemi P (1993) Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN). Brain Lang 44(2):139–152

    CAS  PubMed  Google Scholar 

  • Alho K, Huotilainen M, Tiitinen H, Ilmoniemi RJ, Knuutila J, Näätänen R (1993) Memory-related processing of complex sound patterns in human auditory cortex: a MEG study. NeuroReport 4(4):391–394

    CAS  PubMed  Google Scholar 

  • Atienza M, Cantero JL, Grau C, Gomez C, Dominguez-Marin E, Escera C (2003) Effects of temporal encoding on auditory object formation: a mismatch negativity study. Brain Res Cogn Brain Res 16(3):359–371

    PubMed  Google Scholar 

  • Bendixen A, Jones SJ, Klump G, Winkler I (2010) Probability dependence and functional separation of the object-related and mismatch negativity event-related potential components. Neuroimage 50(1):285–290

    PubMed  Google Scholar 

  • Bishop DV, Hardiman MJ (2010) Measurement of mismatch negativity in individuals: a study using single-trial analysis. 47(4):697–705

    CAS  Google Scholar 

  • Bonte ML, Mitterer H, Zellagui N, Poelmans H, Blomert L (2005) Auditory cortical tuning to statistical regularities in phonology. Clin Neurophysiol 116(12):2765–2774

    PubMed  Google Scholar 

  • Broadbent DE (1958) Perception and communication. Pergamon Press Ltd, London

    Google Scholar 

  • Brunellière A, Dufour S, Nguyen N (2011) Regional differences in the listener’s phonemic inventory affect semantic processing: a mismatch negativity (MMN) study. Brain Lang 117(1):45–51

    PubMed  Google Scholar 

  • Chen S, Sussman ES (2013) Context effects on auditory distraction. Biol Psychol 94(2):297–309

    PubMed  Google Scholar 

  • Colin C, Radeau M, Soquet A, Demolin D, Colin F, Deltenre P (2002) Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory. Clin Neurophysiol 113(4):495–506

    CAS  PubMed  Google Scholar 

  • Cornell SA, Lahiri A, Eulitz C (2011) “What you encode is not necessarily what you store”: evidence for sparse feature representations from mismatch negativity. Brain Res 1394:79–89

    CAS  PubMed  Google Scholar 

  • Czigler I (2014) Visual mismatch negativity and categorization. Brain Topogr, in press

  • Dalebout SD, Stack JW (1999) Mismatch negativity to acoustic differences not differentiated behaviorally. J Am Acad Audiol 10(7):388–399

    CAS  PubMed  Google Scholar 

  • Davids N, van den Brink D, van Turennout M, Mitterer H, Verhoeven L (2009) Towards neurophysiological assessment of phonemic discrimination: context effects of the mismatch negativity. Clin Neurophysiol 120(6):1078–1086

    PubMed  Google Scholar 

  • Deguchi C, Chobert J, Brunellière A, Nguyen N, Colombo L, Besson M (2010) Pre-attentive and attentive processing of French vowels. Brain Res 1366:149–161

    CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dupoux E, Gout A (2000) Electrophysiological correlates of phonological processing: a cross-linguistic study. J Cogn Neurosci 12(4):635–647

    CAS  PubMed  Google Scholar 

  • DeSanctis P, Ritter W, Molholm S, Kelly SP, Foxe JJ (2008) Auditory scene analysis: the interaction of stimulation rate and frequency separation on pre-attentive grou**. Eur J Neurosci 27(5):127–1276

    Google Scholar 

  • Deutsch JA, Deutsch D (1963) Attention: some theoretical considerations. Psychol Rev 70:80–90

    CAS  PubMed  Google Scholar 

  • Díaz B, Baus C, Escera C, Costa A, Sebastián-Gallés N (2008) Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language. Proc Natl Acad Sci USA 105(42):16083–16088

    PubMed Central  PubMed  Google Scholar 

  • Dyson BJ, Alain C, He Y (2005) Effects of visual attentional load on low-level auditory scene analysis. Cogn Affect Behav Neurosci 5(3):319–338

    PubMed  Google Scholar 

  • Froyen D, Van Atteveldt N, Bonte M, Blomert L (2008) Cross-modal enhancement of the MMN to speech-sounds indicates early and automatic integration of letters and speech-sounds. Neurosci Lett 430(1):23–28

    CAS  PubMed  Google Scholar 

  • Gao S, Hu J, Gong D, Chen S, Kendrick KM, Yao D (2012) Integration of consonant and pitch processing as revealed by the absence of additivity in mismatch negativity. PLoS ONE 7(5):e38289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes H, Berstein R, Ritter W, Vaughan HG Jr, Miller J (1997) Storage of feature conjunctions in transient auditory memory. Psychophysiology 34(6):712–716

    CAS  PubMed  Google Scholar 

  • Gomes H, Molholm S, Ritter W, Kurtzberg D, Cowan N, Vaughan HG Jr (2000) Mismatch negativity in children and adults, and effects of an attended task. Psychophysiology 37(6):807–816

    CAS  PubMed  Google Scholar 

  • Grimm S, Widmann A, Schröger E (2004) Differential processing of duration changes within short and long sounds in humans. Neurosci Lett 356(2):83–86

    CAS  PubMed  Google Scholar 

  • Hasting AS, Winkler I, Kotz SA (2008) Early differential processing of verbs and nouns in the human brain as indexed by event-related brain potentials. Eur J Neurosci 27(6):1561–1565

    PubMed  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182(4108):177–180

    CAS  PubMed  Google Scholar 

  • Hisagi M, Shafer VL, Strange W, Sussman ES (2010) Perception of a Japanese vowel length contrast by Japanese and American English listeners: behavioral and electrophysiological measures. Brain Res 1360:89–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hung J, Jones SJ, VazPato M (2001) Scalp potentials to pitch change in rapid tone sequences. A correlate of sequential stream segregation. Exp Brain Res 140(1):56–65

    CAS  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2004) Input to verbal working memory: reattentive construction of the central speech representation. Exp Psychol 51(4):231–239

    PubMed  Google Scholar 

  • Jakoby H, Goldstein A, Faust M (2011) Electrophysiological correlates of speech perception mechanisms and individual differences in second language attainment. Psychophysiology 48(11):1517–1531

    PubMed  Google Scholar 

  • Javitt DC, Grochowski S, Shelley AM, Ritter W (1998) Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalogr Clin Neurophysiol 108(2):143–153

    CAS  PubMed  Google Scholar 

  • Koelsch S, Gunter TC, Wittfoth M, Sammler D (2005) Interaction between syntax processing in language and in music: an ERP Study. J Cogn Neurosci 17(10):1565–1577

    PubMed  Google Scholar 

  • Kraus N, McGee T, Carrell TD, Sharma A (1995) Neurophysiologic bases of speech discrimination. Ear Hear 16(1):19–37

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee TJ, Carrell TD, Zecker SG, Nicol TG, Koch DB (1996) Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science 273:971–973

    CAS  PubMed  Google Scholar 

  • Kujala T, Näätänen R (2001) The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neurosci Biobehav Rev 25:535–543

    CAS  PubMed  Google Scholar 

  • Kujala T, Halmetoja J, Näätänen R, Alku P, Lyytinen H, Sussman E (2006) Speech- and sound-segmentation in dyslexia: evidence for a multiple-level cortical impairment. Eur J Neurosci 24(8):2420–2427

    CAS  PubMed  Google Scholar 

  • Lee CY, Yen HL, Yeh PW, Lin WH, Cheng YY, Tzeng YL, Wu HC (2012) Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Neuropsychologia 50(14):3228–3239

    PubMed  Google Scholar 

  • Lepistö T, Kuitunen A, Sussman E, Saalasti S, Jansson-Verkasalo E, Nieminen-von Wendt T, Kujala T (2009) Auditory stream segregation in children with Asperger syndrome. Biol Psychol 82(3):301–307

    PubMed Central  PubMed  Google Scholar 

  • Lipski SC, Escudero P, Benders T (2012) Language experience modulates weighting of acoustic cues for vowel perception: an event-related potential study. Psychophysiology 49(5):638–650

    PubMed  Google Scholar 

  • List A, Justus T, Robertson LC, Bentin S (2007) A mismatch negativity study of local-global auditory processing. Brain Res 1153:122–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maiste AC, Wiens AS, Hunt MJ, Scherg M, Picton TW (1995) Event-related potentials and the categorical perception of speech sounds. Ear Hear 16(1):68–90

    CAS  PubMed  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1):66–122

    PubMed  Google Scholar 

  • Miglietta S, Grimaldi M, Calabrese A (2013) Conditioned allophony in speech perception: an ERP study. Brain Lang 126(3):285–290

    PubMed  Google Scholar 

  • Morlet D, Fischer C (2014) MMN and novelty P3 in coma and other altered states of consciousness: a review. Brain Topogr, in press

  • Müller D, Schröger E (2007) Temporal grou** affects the automatic processing of deviant sounds. Biol Psychol 74(3):358–364

    PubMed  Google Scholar 

  • Müller D, Widmann A, Schröger E (2005) Auditory streaming affects the processing of successive deviant and standard sounds. Psychophysiology 42:668–676

    PubMed  Google Scholar 

  • Näätänen R (1991) Mismatch negativity outside strong attentional focus: a commentary on Woldorff et al. (1991). Psychophysiology 28(4):478–484

    PubMed  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Erlbaum, Hillsdale

    Google Scholar 

  • Näätänen R (2003) Mismatch negativity: clinical research and possible applications. Int J Psychophysiol 48:179–188

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Google Scholar 

  • Näätänen R, Paavilainen P, Tiitinen H, Jiang D, Alho K (1993) Attention and mismatch negativity. Psychophysiology 30(5):436–450

    PubMed  Google Scholar 

  • Nager W, Teder-Sälejärvi W, Kunze S, Münte TF (2003) Preattentive evaluation of multiple perceptual streams in human audition. NeuroReport 14(6):871–874

    PubMed  Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Nenonen S, Shestakova A, Huotilainen M, Näätänen R (2005) Speech-sound duration processing in a second language is specific to phonetic categories. Brain Lang 92(1):26–32

    PubMed  Google Scholar 

  • Novak GP, Ritter W, Vaughan HG Jr, Wiznitzer ML (1990) Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalogr Clin Neurophysiol 75(4):255–275

    CAS  PubMed  Google Scholar 

  • Novak G, Ritter W, Vaughan HG Jr (1992) Mismatch detection and the latency of temporal judgments. Psychophysiology 29(4):398–411

    CAS  PubMed  Google Scholar 

  • Paavilainen P, Tiitinen H, Alho K, Näätänen R (1993) Mismatch negativity to slight pitch changes outside strong attentional focus. Biol Psychol 37(1):23–41

    CAS  PubMed  Google Scholar 

  • Paavilainen P, Jaramillo M, Näätänen R, Winkler I (1999) Neuronal populations in the human brain extracting invariant relationships from acoustic variance. Neurosci Lett 265(3):179–182

    CAS  PubMed  Google Scholar 

  • Partanen E, Vainio M, Kujala T, Huotilainen M (2011) Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology 48(10):1372–1380

    PubMed  Google Scholar 

  • Peltola MS, Tamminen H, Toivonen H, Kujala T, Näätänen R (2012) Different kinds of bilinguals: different kinds of brains: the neural organization of two languages in one brain. Brain Lang 121(3):261–266

    PubMed  Google Scholar 

  • Perez VB, Woods SW, Roach BJ, Ford JM, McGlashan TH, Srihari VH, Mathalon DH (2013). Automatic Auditory Processing Deficits in Schizophrenia and Clinical High-Risk Patients: Forecasting Psychosis Risk with Mismatch Negativity. Biol Psychiatry, in press

  • Pulvermüller F, Shtyrov Y (2006) Language outside the focus of attention: the mismatch negativity as a tool for studying higher cognitive processes. Prog Neurobiol 79(1):49–71

    PubMed  Google Scholar 

  • Pulvermüller F, Shtyrov Y, Kujala T, Näätänen R (2004) Word-specific cortical activity as revealed by the mismatch negativity. Psychophysiology 41(1):106–112

    PubMed  Google Scholar 

  • Rahne T, Böckmann-Barthel M (2009) Visual cues release the temporal coherence of auditory objects in auditory scene analysis. Brain Res 1300:125–134

    CAS  PubMed  Google Scholar 

  • Rahne T, Sussman E (2009) Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. Eur J Neurosci 29(1):205–211

    PubMed Central  PubMed  Google Scholar 

  • Rahne T, Böckmann M, von Specht H, Sussman E (2007) Visual cues can modulate integration and segregation of objects in auditory scene analysis. Brain Res 1144:127–135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiche M, Hartwigsen G, Widmann A, Saur D, Schröger E, Bendixen A (2013) Involuntary attentional capture by speech and non-speech deviations: a combined behavioral-event-related potential study. Brain Res 1490:153–160

    CAS  PubMed  Google Scholar 

  • Ritter W, Sussman E, Molholm S (2000) Evidence that the mismatch negativity system works on the basis of objects. NeuroReport 11(1):61–63

    CAS  PubMed  Google Scholar 

  • Saarinen J, Paavilainen P, Schöger E, Tervaniemi M, Näätänen R (1992) Representation of abstract attributes of auditory stimuli in the human brain. NeuroReport 3(12):1149–1451

    CAS  PubMed  Google Scholar 

  • Sams M, Alho K, Näätänen R (1983) Sequential effects on the ERP in discriminating two stimuli. Biol Psychol 17(1):41–58

    CAS  PubMed  Google Scholar 

  • Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448

    CAS  PubMed  Google Scholar 

  • Savela J, Kujala T, Tuomainen J, Ek M, Aaltonen O, Näätänen R (2003) The mismatch negativity and reaction time as indices of the perceptual distance between the corresponding vowels of two related languages. Brain Res Cogn Brain Res 16(2):250–256

    PubMed  Google Scholar 

  • Schöger E (1995) Processing of auditory deviants with changes in one versus two stimulus dimensions. Psychophysiology 32(1):55–65

    Google Scholar 

  • Schöger E (1996) The influence of stimulus intensity and inter-stimulus interval on the detection of pitch and loudness changes. Electroencephalogr Clin Neurophysiol 100(6):517–526

    Google Scholar 

  • Schöger E, Näätänen R, Paavilainen P (1992) Event-related potentials reveal how non-attended complex sound patterns are represented by the human brain. Neurosci Lett 146(2):183–186

    Google Scholar 

  • Schöger E, Paavilainen P, Näätänen R (1994) Mismatch negativity to changes in a continuous tone with regularly varying frequencies. Electroencephalogr Clin Neurophysiol 92(2):140–147

    Google Scholar 

  • Shafer VL, Schwartz RG, Kurtzberg D (2004) Language-specific memory traces of consonants in the brain. Brain Res Cogn Brain Res 18(3):242–254

    PubMed  Google Scholar 

  • Sharma A, Dorman MF (1998) Exploration of the perceptual magnet effect using the mismatch negativity auditory evoked potential. J Acoust Soc Am 104(1):511–517

    CAS  PubMed  Google Scholar 

  • Sharma A, Kraus N, McGee T, Carrell T, Nicol T (1993) Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential. Electroencephalogr Clin Neurophysiol 88(1):64–71

    CAS  PubMed  Google Scholar 

  • Shtyrov Y, Pulvermüller F (2002) Neurophysiological evidence of memory traces for words in the human brain. NeuroReport 13(4):521–525

    PubMed  Google Scholar 

  • Sokolov EN (1963) Higher nervous functions: the orienting reflex. Annu Rev Phsyiol 25:545–580

    CAS  Google Scholar 

  • Sonnadara RR, Alain C, Trainor LJ (2006) Effects of spatial separation and stimulus probability on the event-related potentials elicited by occasional changes in sound location. Brain Res 1071(1):175–185

    CAS  PubMed  Google Scholar 

  • Sorokin A, Alku P, Kujala T (2010) Change and novelty detection in speech and non-speech sound streams. Brain Res 23(1327):77–90

    Google Scholar 

  • Squires KC, Squires NK, Hillyard SA (1975) Vertex evoked potentials in a rating scale detection task: relation to signal probability. Behav Biol 13:21–34

    CAS  PubMed  Google Scholar 

  • Steinberg J, Truckenbrodt H, Jacobsen T (2010) Preattentive phonotactic processing as indexed by the mismatch negativity. J Cogn Neurosci 22(10):2174–2185

    PubMed  Google Scholar 

  • Stekelenburg JJ, Vroomen J (2012) Electrophysiological evidence for a multisensory speech-specific mode of perception. Neuropsychologia 50(7):1425–1431

    PubMed  Google Scholar 

  • Sussman E (2005) Integration and segregation in auditory scene analysis. J Acoust Soc Am 117(3):1285–1298

    PubMed  Google Scholar 

  • Sussman E (2007) A new view on the MMN and attention debate: auditory context effects. J Psychophysiol 21(3–4):164–175

    Google Scholar 

  • Sussman E (2013) Attention matters: pitch vs. pattern processing in adolescence. Front Psychol 4(333):1–9

    Google Scholar 

  • Sussman E, Gumenyuk V (2005) Organization of sequential sounds in auditory memory. NeuroReport 16(13):1519–1523

    PubMed  Google Scholar 

  • Sussman E, Steinschneider M (2006) Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Res 1075(1):165–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sussman E, Steinschneider M (2009) Attention effects on auditory scene analysis in children. Neuropsychologia 47(3):771–785

    PubMed Central  PubMed  Google Scholar 

  • Sussman E, Winkler I (2001) Dynamic sensory updating in the auditory system. Cogn Brain Res 12:431–439

    CAS  Google Scholar 

  • Sussman E, Ritter W, Vaughan HG Jr (1998a) Attention affects the organization of auditory input associated with the mismatch negativity system. Brain Res 789:130–138

    CAS  PubMed  Google Scholar 

  • Sussman E, Ritter W, Vaughan HG Jr (1998b) Predictability of stimulus deviance and the mismatch negativity. NeuroReport 9(18):4167–4170

    CAS  PubMed  Google Scholar 

  • Sussman E, Ritter W, Vaughan HG Jr (1999) An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology 36:22–34

    CAS  PubMed  Google Scholar 

  • Sussman E, Winkler I, Huotilainen M, Ritter W, Näätänen R (2002) Top-down effects on the initially stimulus-driven auditory organization. Cogn Brain Res 13:393–405

    Google Scholar 

  • Sussman E, Sheridan K, Kreuzer J, Winkler I (2003a) Representation of the standard: stimulus context effects on the process generating the mismatch negativity component of event-related brain potentials. Psychophysiology 40(3):465–471

    PubMed  Google Scholar 

  • Sussman E, Winkler I, Wang W (2003b) MMN and attention: competition for deviance detection. Psychophysiology 40(3):430–435

    PubMed  Google Scholar 

  • Sussman E, Kujala T, Halmetoja J, Lyytinen H, Alku P, Näätänen R (2004) Automatic and controlled processing of acoustic and phonetic contrasts. Hear Res 190(1–2):128–140

    PubMed  Google Scholar 

  • Sussman E, Bregman AS, Wang WJ, Khan FJ (2005) Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds in multistream auditory environments. Cogn Affect Behav Neurosci 5(1):93–110

    CAS  PubMed  Google Scholar 

  • Sussman ES, Horváth J, Winkler I, Orr M (2007) The role of attention in the formation of auditory streams. Percept Psychophys 69(1):136–152

    PubMed  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150(3700):1187–1188

    CAS  PubMed  Google Scholar 

  • Szymanski MD, Yund EW, Woods DL (1999) Phonemes, intensity and attention: differential effects on the mismatch negativity (MMN). J Acoust Soc Am 106(6):3492–3505

    CAS  PubMed  Google Scholar 

  • Tervaniemi M, Kruck S, DeBaene W, Schröger E, Alter K, Friederici AD (2009) Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. Eur J Neurosci 30(8):1636–1642

    CAS  PubMed  Google Scholar 

  • Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372(6501):90–92

    CAS  PubMed  Google Scholar 

  • Treisman AM (1969) Strategies and models of selective attention. Psychol Rev 76:282–299

    CAS  PubMed  Google Scholar 

  • van Linden S, Stekelenburg JJ, Tuomainen J, Vroomen J (2007) Lexical effects on auditory speech perception: an electrophysiological study. Neurosci Lett 420(1):49–52

    PubMed  Google Scholar 

  • van Zuijen TL, Sussman E, Winkler I, Näätänen R, Tervaniemi M (2004) Grou** of sequential sounds—an event-related potential study comparing musicians and nonmusicians. J Cogn Neurosci 16(2):331–338

    PubMed  Google Scholar 

  • Wang XD, Gu F, He K, Chen LH, Chen L (2012) Preattentive extraction of abstract auditory rules in speech sound stream: a mismatch negativity study using lexical tones. PLoS ONE 7(1):e30027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei JH, Chan TC, Luo YJ (2002) A modified oddball paradigm “cross-modal delayed response” and the research on mismatch negativity. Brain Res Bull 57(2):221–230

    PubMed  Google Scholar 

  • Winkler I, Lehtokoski A, Alku P, Vainio M, Czigler I, Csépe V, Aaltonen O, Raimo I, Alho K, Lang H, Iivonen A, Näätänen R (1999) Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations. Brain Res Cogn Brain Res 7(3):357–369

    CAS  PubMed  Google Scholar 

  • Winkler I, Korzyukov O, Gumenyuk V, Cowan N, Linkenkaer-Hansen K, Ilmoniemi RJ, Alho K, Näätänen R (2002) Temporary and longer term retention of acoustic information. 39(4):530–534

    Google Scholar 

  • Winkler I, Kujala T, Alku P, Näätänen R (2003a) Language context and phonetic change detection. Brain Res Cogn Brain Res 17(3):833–844

    PubMed  Google Scholar 

  • Winkler I, Sussman E, Tervaniemi M, Horváth J, Ritter W, Näätänen R (2003b) Preattentive auditory context effects. Cogn Affect Behav Neurosci 3(1):57–77

    PubMed  Google Scholar 

  • Winkler I, Takegata R, Sussman E (2005) Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Brain Res Cogn Brain Res 25(1):291–299

    PubMed  Google Scholar 

  • Woldorff MG, Hackley SA, Hillyard SA (1991) The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology 28(1):30–42

    CAS  PubMed  Google Scholar 

  • Woldorff MG, Hillyard SA, Gallen CC, Hampson SR, Bloom FE (1998) Magnetoencephalographic recordings demonstrate attentional modulation of mismatch-related neural activity in human auditory cortex. Psychophysiology 35(3):283–292

    CAS  PubMed  Google Scholar 

  • ** J, Zhang L, Shu H, Zhang Y, Li P (2010) Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience 170(1):223–231

    CAS  PubMed  Google Scholar 

  • Yabe H, Winkler I, Czigler I, Koyama S, Kakigi R, Sutoh T, Hiruma T, Kaneko S (2001) Organizing sound sequences in the human brain: the interplay of auditory streaming and temporal integration. Cogn Brain Res 897:222–227

    Google Scholar 

  • Ylinen S, Uther M, Latvala A, Vepsäläinen S, Iverson P, Akahane-Yamada R, Näätänen R (2010) Training the brain to weight speech cues differently: a study of Finnish second-language users of English. J Cogn Neurosci 22(6):1319–1332

    PubMed  Google Scholar 

Download references

Acknowledgements.

Support was provided by the National Institute on Deafness and Other Communications Disorders (R01DC004623, E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Sussman.

Additional information

This is one of several papers published together in Brain Topography on the “Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sussman, E.S., Chen, S., Sussman-Fort, J. et al. The Five Myths of MMN: Redefining How to Use MMN in Basic and Clinical Research. Brain Topogr 27, 553–564 (2014). https://doi.org/10.1007/s10548-013-0326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0326-6

Keywords

Navigation