Log in

Artificial feedback for invasive brain–computer interfaces

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

During the last two decades, considerable progress has been made in the studies of brain–computer interfaces (BCIs)—devices in which motor signals from the brain are registered by multi-electrode arrays and transformed into commands for artificial actuators such as cursors and robotic devices. This review is focused on one problem. Voluntary motor control is based on neurophysiological processes, which strongly depend on the afferent innervation of skin, muscles, and joints. Thus, invasive BCI has to be based on a bidirectional system in which motor control signals are registered by multichannel microelectrodes implanted in motor areas, whereas tactile, proprioceptive, and other useful signals are transported back to the brain through spatiotemporal patterns of intracortical microstimulation (ICMS) delivered to sensory areas. In general, the studies of invasive BCIs have advanced in several directions. The progress of BCIs with artificial sensory feedback will not only help patients, but will also expand base knowledge in the field of human cortical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranauskas, G., What limits the performance of current invasive brain computer machine interfaces?, Front. Syst. Neurosci., 2014, vol. 8, pp. 68.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evarts, E.V., Relation of pyramidal tract activity to force exerted during voluntary movement, J. Neurophysiol., 1968, vol. 31, no. 1, p. 14.

    CAS  PubMed  Google Scholar 

  3. Humphrey, D.R., Schmidt, E.M., and Thompson, W.D., Predicting measures of motor performance from multiple cortical spike trains, Science, 1970, vol. 170, no. 3959, p. 758.

    Article  CAS  PubMed  Google Scholar 

  4. Fetz, E.E., Operant conditioning of cortical unit activity, Science, 1969, vol. 163, no. 3870, p. 955.

    Article  CAS  PubMed  Google Scholar 

  5. Georgopoulos, A.P., Schwartz, A.B., and Ketiner, R.E., Neuronal population coding of movement direction, Science, 1986, vol. 233, no. 4771, p. 1416.

    Article  CAS  PubMed  Google Scholar 

  6. Georgopoulos, A.P., Kettner, R.E., and Schwartz, A.B., Primate motor cortex and free arm movements to visual targets in three-dimensional space: II. Coding of the direction of movement by a neuronal population, J. Neurosci., 1988, vol. 8, no. 8, p. 2928.

    CAS  PubMed  Google Scholar 

  7. Chapin, J.K., Moxon, K.A., Markowitz, R.S., and Nicolelis, M.A., Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex, Nat. Neurosci., 1999, vol. 2, no. 7, p. 664.

    Article  CAS  PubMed  Google Scholar 

  8. Carmena, J.M., Lebedev, M.A., Crist, R.E., et al., Learning to control a brain-machine interface for reaching and gras** by primates, PLoS Biol., 2003, vol. 1, no. 2, p. 193.

    Article  CAS  Google Scholar 

  9. Musallam, S., Corneil, B.D., Greger, B., et al., Cognitive control signals for neural prosthetics, Science, 2004, vol. 305, no. 5681, p. 258.

    Article  CAS  PubMed  Google Scholar 

  10. Santhanam, G., Ryu, S.I., Yu, B.M., et al., A high-performance brain-computer interface, Nature, 2006, vol. 442, no. 7099, p. 195.

    Article  CAS  PubMed  Google Scholar 

  11. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., et al., Brain-machine interface: instant neural control of a movement signal, Nature, 2002, vol. 416, pp. 141.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, D.M., Tillery, S.I.H., and Schwartz, A.B., Direct cortical control of 3D neuroprosthetic devices, Science, 2002, vol. 296, no. 5574, p. 1829.

    Article  CAS  PubMed  Google Scholar 

  13. Fallon, J.B., Irvine, D.R.F., and Shepherd, R.K., Neural prostheses and brain plasticity, J. Neural Eng., 2009, vol. 6, no. 6, 065008.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sedwick, C., Practice makes perfect: Learning mind control of prosthetics, PLoS Biol., 2009, vol. 7, no. 7, e1000152.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, W., Collinger, J.L., Perez, M.A., et al., Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity, Phys. Med. Rehabil. Clin. North Am., 2010, vol. 21, no. 1, p. 157.

    Article  CAS  Google Scholar 

  16. Johansson, R.S. and Flanagan, J.R., Coding and use of tactile signals from the fingertips in object manipulation tasks, Nat. Rev. Neurosci., 2009, vol. 10, no. 5, p. 345.

    Article  CAS  PubMed  Google Scholar 

  17. Wheat, H.E., Goodwin, A.W., and Browning, A.S., Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine positions of objects contacting the fingerpad, J. Neurosci., 1975, vol. 15, no. 8, p. 5582.

    Google Scholar 

  18. Jones, L.A. and Smith, A.M., Tactile sensory system: encoding from the periphery to the cortex, Wiley Interdiscip. Rev. Syst. Biol. Med., 2014, vol. 6, no. 3, p. 279.

    Article  PubMed  Google Scholar 

  19. Sainburg, R.L., Ghilardi, M.F., Poizner, H., and Ghez, C., Control of limb dynamics in normal subjects and patients without proprioception, J. Neurophysiol., 1995, vol. 73, no. 2, p. 820.

    CAS  PubMed  Google Scholar 

  20. Shenoy, K.V., Sahani, M., and Churchland, M.M., Cortical control of arm movements: a dynamical systems perspective, Annu. Rev. Neurosci., 2013, vol. 36, pp. 337.

    Article  CAS  PubMed  Google Scholar 

  21. Lebedev, M.A., Tate, A.J., Hanson, T.L., et al., Future developments in brain-machine interface research, Clinics, 2011, vol. 66, no. S1, p. 25.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bensmaia, S.J. and Miller, L.E., Restoring sensorimotor function through intracortical interfaces: progress and looming challenges, Nat. Rev. Neurosci., 2014, vol. 15, no. 5, p. 313.

    Article  CAS  PubMed  Google Scholar 

  23. Suminski, A.J., Tkach, D.C., Fagg, A.H., and Hatsopoulos, N.G., Incorporating feedback from multiple sensory modalities enhances brain-machine interface control, J. Neurosci., 2010, vol. 30, no. 50, p. 16777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilja, V., Chestek, C.A., Diester, I., et al., Challenges and opportunities for next-generation intracortically based neural prostheses, IEEE Trans. Biomed. Eng., 2011, vol. 58, no. 7, p. 1891.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Green, A.M. and Kalaska, J.F., Learning to move machines with the mind, Trends Neurosci., 2011, vol. 34, no. 2, p. 61.

    Article  CAS  PubMed  Google Scholar 

  26. Venkatraman, S. and Carmena, J.M., Active sensing of target location encoded by cortical microstimulation, IEEE Trans. Neural Syst. Rehabil. Eng., 2011, vol. 19, no. 3, p. 317.

    Article  PubMed  Google Scholar 

  27. Chambers, C.D. and Mattingley, J.B., Neurodisruption of selective attention: insights and implications, Trends Cognit. Sci., 2005, vol. 9, no. 11, p. 542.

    Article  Google Scholar 

  28. Graziano, M.S.A., Taylor, C.S.R., and Moore, T., Complex movements evoked by microstimulation of precentral cortex, Neuron, 2002, vol. 34, pp. 841.

    Article  CAS  PubMed  Google Scholar 

  29. Tehovnik, E.J., Tolias, A.S., Sultan, F., et al., Direct and indirect activation of cortical neurons by electrical microstimulation, J. Neurophysiol., 2006, vol. 96, no. 2, p. 512.

    Article  CAS  PubMed  Google Scholar 

  30. Romo, R., Hernández, A., Zainos, A., and Salinas, E., Somatosensory discrimination based on cortical microstimulation, Nature, 1998, vol. 392, no. 6674, p. 387.

    Article  CAS  PubMed  Google Scholar 

  31. Romo, R., Hernández, A., Zainos, A., et al., Sensing without touching: psychophysical performance based on cortical microstimulation, Neuron, 2000, vol. 26, no. 1, p. 273.

    Article  CAS  PubMed  Google Scholar 

  32. de Lafuente, V. and Romo, R., Neuronal correlates of subjective sensory experience, Nat. Neurosci, 2005, vol. 8, no. 12, p. 1698.

    Article  PubMed  Google Scholar 

  33. Fitzsimmons, N.A., Drake, W., Hanson, T.L., et al., Primate reaching cued by multichannel spatiotemporal cortical microstimulation, J. Neurosci., 2007, vol. 27, no. 21, p. 5593.

    Article  CAS  PubMed  Google Scholar 

  34. O’Doherty, J.E., Lebedev, M.A., Hanson, T.L., et al., A brain-machine interface instructed by direct intracortical microstimulation, Front. Integr. Neurosci., 2009, vol. 3, no. 20, p. 5.

    Google Scholar 

  35. O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., et al., Active tactile exploration enabled by a brain-machine-brain interface, Nature, 2011, vol. 479, no. 7372, p. 228.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Histed, M.H., Ni, A.M., and Maunsell, J.H.R., Insights into cortical mechanisms of behavior from microstimulation experiments. Conversion of Sensory Signals into Perceptions, Memories and Decisions, Prog. Neurobiol., 2013, vol. 103, pp. 115.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Merrill, D.R., Bikson, M., and Jefferys, J.G.R., Electrical stimulation of excitable tissue: design of efficacious and safe protocols, J. Neurosci. Meth., 2005, vol. 141, no. 2, p. 171.

    Article  Google Scholar 

  38. Joucla, S., Branchereau, P., Cattaert, D., and Yvert, B., Extracellular neural microstimulation may activate much larger regions than expected by simulations: a combined experimental and modeling study, PLoS One, 2012, vol. 7, no. 8, e41324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Overstreet, C.K., Klein, J.D., and Helms Tillery, S.I., Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex, J. Neural Eng., 2013, vol. 10, no. 6, 066016.

    Article  CAS  PubMed  Google Scholar 

  40. Song, W., Kerr, C.C., Lytton, W.W., and Francis, J.T., Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex, PLoS One, 2013, vol. 8, no. 3, e57453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Medina, L.E., Lebedev, M.A., O’Doherty, J.E., and Nicolelis, M.A.L., Stochastic facilitation of artificial tactile sensation in primates, J. Neurosci., 2012, vol. 32, no. 41, p. 14271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zaaimi, B., Ruiz-Torres, R., Solla, S.A., and Miller, L.E., Multi-electrode stimulation in somatosensory cortex increases probability of detection, J. Neural Eng., 2013, vol. 10, no. 5, 056013.

    Article  PubMed  Google Scholar 

  43. Weber, D.J., London, B.M., Hokanson, J.A., et al., Limb-state information encoded by peripheral and central somatosensory neurons: implications for an afferent interface, IEEE Trans. Neural Syst. Rehabil. Eng., 2011, vol. 19, no. 5, p. 501.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim, S., Callier, T., Tabot, G., et al., Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes, Front. Syst. Neurosci., 2015, vol. 9, art. 47.

    PubMed  PubMed Central  Google Scholar 

  45. Taoka, M., Toda, T., and Iwamura, Y., Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex, Exp. Brain Res., 1998, vol. 123, no. 3, p. 315.

    Article  CAS  PubMed  Google Scholar 

  46. Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O., Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey, Exp. Brain Res., 1983, vol. 51, no. 3, p. 315.

    Google Scholar 

  47. Kaas, J.H., The functional organization of somatosensory cortex in primates, Ann. Anat., 1993, vol. 175, no. 6, p. 509.

    Article  CAS  PubMed  Google Scholar 

  48. Krubitzer, L.A. and Kaas, J.H., The organization and connections of somatosensory cortex in marmosets, J. Neurosci., 1990, vol. 10, no. 3, p. 952.

    CAS  PubMed  Google Scholar 

  49. Kaas, J.H., Stepniewska, I., and Gharbawie, O., Cortical networks subserving upper limb movements in primates, Eur. J. Phys. Rehabil. Med., 2012, vol. 48, no. 2, p. 299.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sur, M., Garraghty, P.E., and Bruce, C.J., Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and I, Brain Res., 1985, vol. 342, no. 2, p. 391.

    Article  CAS  PubMed  Google Scholar 

  51. Reed, J.L., Qi, H.X., Pouget, P., et al., Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation, J. Neurophysiol., 2010, vol. 104, no. 6, p. 3136.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lipton, M.L., Liszewski, M.C., O’Connell, M.N., et al. Interactions within the hand representation in primary somatosensory cortex of primates, J. Neurosci., 2010, vol. 30, no. 47, p. 15895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thakur, P.H., Fitzgerald, P.J., and Hsiao, S.S., Secondorder receptive fields reveal multidigit interactions in area 3b of the macaque monkey, J. Neurophysiol., 2012, vol. 108, pp. 243.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Friedman, R.M., Chen, L.M., and Roe, A.W., Responses of areas 3b and 1 in anesthetized squirrel monkeys to singleand dual-site stimulation of the digits, J. Neurophysiol., 2008, vol. 100, pp. 3185.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Negyessy, L., Palfi, E., Ashaber, M., et al., Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence, J. Comp. Neurol., 2013, vol. 521, no. 12, p. 2798.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Andersen, R.A., Kellis, S., Klaes, C., and Aflalo, T., Toward more versatile and intuitive cortical brainmachine interfaces, Curr. Biol., 2014, vol. 24, no. 18, p. R885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fagg, A.H., Hatsopoulos, N.G., Lafuente, V., et al., Biomimetic brain machine interfaces for the control of movement, J. Neurosci., 2007, vol. 27, no. 44, p. 11842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Krubitzer, L., Huffman, K.J., Disbrow, E., and Recanzone, G., Organization of area 3a in macaque monkeys: contributions to the cortical phenotype, J. Comp. Neurol., 2004, vol. 471, no. 1, p. 97.

    Article  PubMed  Google Scholar 

  59. London, B.M., Jordan, L.R., Jackson, C.R., and Miller, L.E., Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey, IEEE Trans. Neural Syst. Rehabil. Eng., 2008, vol. 16, no. 1, p. 32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dadarlat, M.C., O’Doherty, J.E., and Sabes, P.N., A learning-based approach to artificial sensory feedback: intracortical microstimulation (ICMS) replaces and augments vision, Proc. 6th Int. Conf. IEEE EMBS Neural Eng. Conf., 2013.

    Google Scholar 

  61. Dadarlat, M.C., O’Doherty, J.E., and Sabes, P.N., A learning-based approach to artificial sensory feedback, in Brain-Computer Interface Research, Springer Briefs in Electrical and Computer Engineering, 2014, p. 31.

    Google Scholar 

  62. Makin, J.G. and Sabes, P.N., Sensory integration and density estimation, Adv. Neural Inf. Process. Syst., 2014, p. 478.

    Google Scholar 

  63. Dadarlat, M.C., O’Doherty, J.E., and Sabes, P.N., A learning-based approach to artificial sensory feedback leads to optimal integration, Nat. Neurosci., 2015, vol. 18, no. 1, p. 138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vato, A., Semprini, M., Maggiolini, E., et al., Sha** the dynamics of a bidirectional neural interface, PLoS Comput. Biol., 2012, vol. 8, no. 7, e1002578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roschin, V.Y., Frolov, A.A., Burnod, Y., and Maier, M.A., A neural network model for the acquisition of a spatial body scheme through sensory-motor interaction, Neural Comput., 2011, vol. 23, no. 7, p. 1821.

    Article  PubMed  Google Scholar 

  66. Hatsopoulos, N.G. and Donoghue, J.P., The science of neural interface systems, Annu. Rev. Neurosci., 2009, vol. 32, pp. 249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chao, Z.C., Nagasaka, Y., and Fujii, N., Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys, Front. Neuroeng., 2010, vol. 3, pp. 3.

    PubMed  PubMed Central  Google Scholar 

  68. Schalk, G., Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces?, Front. Neuroeng., 2010, vol. 3, pp. 9.

    PubMed  PubMed Central  Google Scholar 

  69. Stark, E. and Abeles, M., Predicting movement from multiunit activity, J. Neurosci., 2007, vol. 27, no. 31, p. 8387.

    Article  CAS  PubMed  Google Scholar 

  70. Thelin, J., Jörntell, H., Psouni, E., et al., Implant size and fixation mode strongly influence tissue reactions in the CNS, PLoS One, 2011, vol. 6, no. 1, e16267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bansal, A.K., Truccolo, W., Vargas-Irwin, C.E., and Donoghue, J.P., Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: Spikes, multiunit activity, and local field potentials, J. Neurophysiol., 2012, vol. 107, no. 5, p. 1337.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bishop, W., Chestek, C.C., Gilja, V., et al., Self-recalibrating classifiers for intracortical brain-computer interface, J. Neural. Eng., 2014, vol. 11, 026001.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Homer, M.L., Perge, J.A., Black, M.J., et al., Adaptive offset correction for intracortical brain-computer interfaces, IEEE Trans. Neural. Syst. Rehabil. Eng., 2014, vol. 22, no. 2, p. 239.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kao, J.C., Stavisky, S.D., Sussillo, D., et al., Information systems opportunities in brain-machine interface decoders, Proc. IEEE, 2014, vol. 102, no. 5, p. 666.

    Article  Google Scholar 

  75. Li, Z., Decoding methods for neural prostheses: where have we reached?, Front. Syst. Neurosci., 2014, vol. 8, art. 129.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ward, M.P., Rajdev, P., Ellison, C., and Irazoqui, P.P., Toward a comparison of microelectrodes for acute and chronic recordings, Brain Res., 2009, no. 1282, p. 183.

    Article  CAS  PubMed  Google Scholar 

  77. Cogan, S.F., Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 2008, vol. 10, pp. 275.

    Article  CAS  PubMed  Google Scholar 

  78. Tabot, G.A., Dammann, J.F., Berg, J.A., et al., Restoring the sense of touch with a prosthetic hand through a brain interface, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 45, p. 18279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Doherty, J.E., Lebedev, M.A., Li, Z., and Nicolelis, M.A.L., Virtual active touch using randomly patterned intracortical microstimulation, IEEE Trans. Neural Syst. Rehabil. Eng., 2012, vol. 20, no. 1, p. 85.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jorfi, M., Skousen, J.L., Weder, C., and Capadona, J.R., Progress towards biocompatible intracortical microelectrodes for neural interfacing applications, J. Neural Eng., 2015, vol. 12, no. 1, 011001.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen, K.H., Dammann, J.F., Boback, J.L., et al., The effect of chronic intracortical microstimulation on the electrode-tissue interface, J. Neural Eng., 2014, vol. 11, no. 2, 026004.

    Article  PubMed  Google Scholar 

  82. Walter, A., Murguialday, A.R., Rosenstiel, W., et al., Coupling BCI and cortical stimulation for brain-statedependent stimulation: methods for spectral estimation in the presence of stimulation after-effects, Front. Neural Circuits, 2012, vol. 6, art. 87.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Klaes, C., Shi, Y., Kellis, S., et al., A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback, J. Neural Eng., 2014, vol. 11, 056024.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Berg, J.A., Dammann, J.F., Tenore, F.V., et al., Behavioral demonstration of a somatosensory neuroprosthesis, IEEE Trans. Neural. Syst. Rehabil. Eng., 2013, vol. 21, no. 3, p. 500.

    Article  CAS  PubMed  Google Scholar 

  85. Orsborn, A.L. and Carmena, J.M., Creating new functional circuits for action via brain-machine interfaces, Front. Comp. Neurosci., 2013, vol. 7, art. 157.

    Google Scholar 

  86. Kalaska, J.F., From intention to action: motor cortex and the control of reaching movements, Adv. Exp. Med. Biol., 2009, vol. 629, pp. 139.

    Article  PubMed  Google Scholar 

  87. Ganguly, K. and Carmena, J.M., Emergence of a stable cortical map for neuroprosthetic control, PLoS Biol., 2009, vol. 7, no. 7, e1000153.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jarosiewicz, B., Chase, S.M., Fraser, G.W., et al., Functional network reorganization during learning in a brain-computer interface paradigm, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 49, p. 19486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Badakva.

Additional information

Original Russian Text © A.M. Badakva, N.V. Miller, L.N. Zobova, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 1, pp. 128–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badakva, A.M., Miller, N.V. & Zobova, L.N. Artificial feedback for invasive brain–computer interfaces. Hum Physiol 42, 111–118 (2016). https://doi.org/10.1134/S0362119716010023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716010023

Keywords

Navigation