Artificial Sensory Feedback to the Brain: Somatosensory Feedback for Neural Devices and BCI

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Electrical stimulation of the brain is an enabling technology for the fields of neuroscience, clinical medicine, and biomedical engineering. First developed in the late 1800s, neurosurgeons discovered the brain was electrically excitable and both motor and sensory percepts could be elicited from stimulating different cortical regions. In the last 20 years, electrical stimulation has been used to treat a variety of disorders including essential tremor, depression, and various psychiatric conditions. Stimulation has also been used to elicit visual percepts, enhance memory, and recreate somatosensations on the hands, arms, torso, head, and face.

These achievements have been primarily driven by fundamental research in rodents, monkeys, and human participants. These studies asked important questions regarding the organization of the brain, identified neural networks responsible for generating physical sensation, and posed engineering questions about building devices which efficiently communicate with neural circuits.

In this chapter, we focus on brain-computer interfaces and how to electrically stimulate the brain to recreate somatosensation. We explore the translational motivations for this emerging research, discuss historical map** experiments of cortical sensory areas, and describe the state-of-the-art achievements in this nascent area. Progress has emerged through simultaneous work by engineers designing stimulation devices to target deep cortical structures or the cortical surface and neuroscientists learning how cortex networks process sensations evoked by the stimulation patterns.

Current research is focused on how closely stimulation patterns must mimic existing neural patterns to create “naturalistic” sensations. By exploring these fundamental questions, we aim to lay the ground work for future solutions to restoring sensation via direct brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ICMS:

Intracortical microstimulation

ECoG:

Electrocorticography

BCI:

Brain-computer interface

BMI:

Brain-machine interface

2AFC:

Two-alternative-forced-choice task

DOF:

Degree of freedom

S1:

Primary sensory cortex

M1:

Primary motor cortex

References

  1. Penfield, W., Jasper, H.: Epilepsy and the Functional Anatomy of the Human Brain. Little, Brown & Co., Oxford (1954)

    Google Scholar 

  2. Clark, K.L., Armstrong, K.M., Moore, T.: Probing neural circuitry and function with electrical microstimulation. Proc. R. Soc. B Biol. Sci. 278(1709), 1121–1130 (2011)

    Google Scholar 

  3. Histed, M. H., Ni, A. M., Maunsell, J. H. R.: Insights into cortical mechanisms of behavior from microstimulation experiments, (2012)

    Google Scholar 

  4. Cohen, M.R., Newsome, W.T.: What electrical microstimulation has revealed about the neural basis of cognition. Curr. Opin. Neurobiol. 14(2), 169–177 (2004)

    Google Scholar 

  5. Hochberg, L.R., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485(7398), 372–375 (2012)

    Google Scholar 

  6. Collinger, J.L., et al.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 381(9866), 557–564 (2013)

    Google Scholar 

  7. Wang, W., et al.: An electrocorticographic brain interface in an individual with Tetraplegia. PLoS One. 8(2) (2013)

    Google Scholar 

  8. Flesher, S.N., et al.: Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8(361), 361ra141 (2016)

    Google Scholar 

  9. Armenta Salas, M., et al.: Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. elife. 7 (2018)

    Google Scholar 

  10. Bensmaia, S.J., Miller, L.E.: Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15(5), 313–325 (2014)

    Google Scholar 

  11. Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 119(Pt 2), 507–522 (1996)

    Google Scholar 

  12. Zrenner, E.: Will retinal implants restore vision? Science. 295(5557), 1022–1025 (2002)

    Google Scholar 

  13. Pezaris, J.S., Reid, R.C.: Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc. Natl. Acad. Sci. U. S. A. 104(18), 7670–7675 (2007)

    Google Scholar 

  14. Tehovnik, E.J., Slocum, W.M., Smirnakis, S.M., Tolias, A.S.: Microstimulation of visual cortex to restore vision. Prog. Brain Res. 175(09) Elsevier (2009)

    Google Scholar 

  15. Panetsos, F., Sanchez-Jimenez, A., Cerio, E.D., Diaz-Guemes, I., Sanchez, F.M.: Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front. Neurosci. 5, 84 (2011)

    Google Scholar 

  16. Lewis, P.M., et al.: Advances in implantable bionic devices for blindness: a review. ANZ J. Surg. 86(9), 654–659 (2016)

    Google Scholar 

  17. Grayden, D.B., Clark, G.M.: Implant Design and Development, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  18. Shepherd, R.K., McCreery, D.B.: Basis of electrical stimulation of the cochlea and the cochlear nucleus. Adv. Otorhinolaryngol. 64, 186–205 (2006)

    Google Scholar 

  19. Lee, D.S., et al.: Cross-modal plasticity and cochlear implants. Nature. 409(6817), 149–150 (2001)

    Google Scholar 

  20. Deuschl, G., et al.: A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355(9), 896–908 (2006)

    Google Scholar 

  21. Kumar, R., Lozano, A.M., Sime, E., Halket, E., Lang, A.E.: Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology. 53(3), 561–566 (1999)

    Google Scholar 

  22. Kumar, R., Lozano, A.M., Sime, E., Lang, A.E.: Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology. 61(11), 1601–1604 (2003)

    Google Scholar 

  23. Malekmohammadi, M., et al.: Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov. Disord. 31(3), 426–428 (2016)

    Google Scholar 

  24. Mayberg, H.S., et al.: Deep brain stimulation for treatment-resistant depression. Neuron. 45(5), 651–660 (2005)

    Google Scholar 

  25. Widge, A.S., Dougherty, D.D., Moritz, C.T.: Affective brain-computer interfaces as enabling technology for responsive psychiatric stimulation. Brain-Comput Interfaces. 1(2), 126–136 (2014)

    Google Scholar 

  26. Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., Deadwyler, S.A.: A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 8(4) (2011)

    Google Scholar 

  27. Schafer, E.A.: Experiments on the electrical excitation of the cerebral cortex in the monkey. Brain. 11, 1–6 (1888)

    Google Scholar 

  28. Romo, R., Hernández, A., Zainos, A., Salinas, E.: Somatosensory discrimination based on cortical microstimulation. Nature. 392(6674), 387–390 (1998)

    Google Scholar 

  29. Houweling, A.R., Brecht, M.: Behavioural report of single neuron stimulation in somatosensory cortex. Nature. 451(7174), 65–68 (2008)

    Google Scholar 

  30. O’Doherty, J.E., et al.: Active tactile exploration using a brain-machine-brain interface. Nature. 479(7372), 228–231 (2011)

    Google Scholar 

  31. Thomson, E.E., Carra, R., Nicolelis, M.A.L.: Perceiving invisible light through a somatosensory cortical prosthesis. Nat. Commun. 4, 1482 (2013)

    Google Scholar 

  32. Klaes, C., Shi, Y., Kellis, S., Minxha, J., Revechkis, B., Andersen, R.A.: A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J. Neural Eng. 11(5), 056024 (2014)

    Google Scholar 

  33. Ievins, A., Moritz, C.T.: Therapeutic stimulation for restoration of function after spinal cord injury. Physiology. 32(5), 391–398 (2017)

    Google Scholar 

  34. Cole, J.: Pride and a Daily Marathon. MIT Press (1995)

    Google Scholar 

  35. Sainburg, R.L., Poizner, H., Ghez, C.: Loss of proprioception produces deficits in interjoint coordination. J. Neurophysiol. 70(5), 2136–2147 (1993)

    Google Scholar 

  36. Navarro, X., Krueger, T.B., Lago, N., Micera, S., Stieglitz, T., Dario, P.: A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10(3), 229–258 (2005)

    Google Scholar 

  37. Harkema, S., et al.: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted step** after motor complete paraplegia: a case study. Lancet. 377(9781), 1938–1947 (2011)

    Google Scholar 

  38. French, J.S., Anderson-Erisman, K.D., Sutter, M.: What do spinal cord injury consumers want? A review of spinal cord injury consumer priorities and neuroprosthesis from the 2008 neural interfaces conference. Neuromodulation. 13(3), 229–231 (2010)

    Google Scholar 

  39. Anderson, K.D.: Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma. 21(10), 1371–1383 (2004)

    Google Scholar 

  40. Fitzsimmons, N.A., Drake, W., Hanson, T.L., Lebedev, M.A., Nicolelis, M.A.L.: Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J. Neurosci. 27(21), 5593–5602 (2007)

    Google Scholar 

  41. Fridman, G.G.Y., Blair, H.H.T.H., Blaisdell, A.A.P.A., Judy, J.W.J.: Perceived intensity of somatosensory cortical electrical stimulation. Exp. Brain Res. 203(3), 499–515 (2010)

    Google Scholar 

  42. Tabot, G.A., et al.: Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl. Acad. Sci. U. S. A. 110(45), 18279–18284 (2013)

    Google Scholar 

  43. Fifer, M.S., McMullen, D.P., Osborn, L.E., Thomas, T.M., Christie, B.P., Nickl, .RW., Candrea, D.N., Pohlmeyer, E.A., Thompson, M.C., Anaya, M.A., Schellekens, W., Ramsey, N.F., Bensmaia, S.J., Anderson, W.S., Wester, B.A., Crone, N.E., Celnik, P.A., Cantarero, G.L., Tenore, F.V.: Intracortical somatosensory stimulation to elicit fingertip sensations in an individual with spinal cord injury. Neurology (2021). https://doi.org/10.1212/WNL.0000000000013173

  44. Johnson, L.A., Wander, J.D., Sarma, D., Su, D.K., Fetz, E.E., Ojemann, J.G.: Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J. Neural Eng. 10(3) (2013)

    Google Scholar 

  45. Maynard, E.M., Nordhausen, C.T., Normann, R.A.: The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997)

    Google Scholar 

  46. Lee, B., et al.: Engineering artificial somatosensation through cortical stimulation in humans. Front. Syst. Neurosci. 12, 24 (2018)

    Google Scholar 

  47. Collins, K.L., Guterstam, A., Cronin, J., Olson, J.D., Ehrsson, H.H., Ojemann, J.G.: Ownership of an artificial limb induced by electrical brain stimulation. Proc. Natl. Acad. Sci. 114(1), 166–171 (2017)

    Google Scholar 

  48. Cronin, J.A., et al.: Task-specific somatosensory feedback via cortical stimulation in humans. IEEE Trans. Haptics. 9(4), 515–522 (2016)

    Google Scholar 

  49. Kellis, S.S., House, P.A., Thomson, K.E., Brown, R., Greger, B.: Human neocortical electrical activity recorded on nonpenetrating microwire arrays: applicability for neuroprostheses. Neurosurg. Focus. 27(1), E9 (2009)

    Google Scholar 

  50. Bradley, G., House, P.: Epilpsy electrodes. [Online]. Available: http://greger.lab.asu.edu/image-gallery/epilepsy-electrodes/.

  51. Normann, R.A., Fernandez, E.: Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J. Neural Eng. 13(6), 061003 (2016)

    Google Scholar 

  52. Weber, D.J., Friesen, R., Miller, L.E.: Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J. Mot. Behav. 44(6), 403–418 (2012)

    Google Scholar 

  53. Fetz, E.: Operant conditioning of cortical unit activity. Science. 80, 28–31 (1969)

    Google Scholar 

  54. Kennedy, P.R., Bakay, R.A.E.: Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 9(8), 1707–1711 (1998)

    Google Scholar 

  55. Wessberg, J., et al.: Real-time prediction of hand tranjectory by ensembles of cortical neurons in primate. Nature. 408(1), 361–365 (2000)

    Google Scholar 

  56. Musallam, S., Corneil, B.D., Greger, B., Scherberger, H., Andersen, R.A.: Cognitive control signals for neural prosthetics. Science. 305(5681), 258–262 (2004)

    Google Scholar 

  57. Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature. 453(7198), 1098–1101 (2008)

    Google Scholar 

  58. Nicolelis, M.A.L., Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)

    Google Scholar 

  59. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Instant neural control of a movement signal. Nature. 416(6877), 141–142 (2002)

    MATH  Google Scholar 

  60. Carmena, J.M., et al.: Learning to control a brain-machine interface for reaching and gras** by primates. PLoS Biol. 1(2), 193–208 (2003)

    Google Scholar 

  61. Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain–computer interface. Nature. 442(7099), 195–198 (2006)

    Google Scholar 

  62. Resnik, L., et al.: Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch. Phys. Med. Rehabil. 93(4), 710–717 (2012)

    Google Scholar 

  63. Johannes, M.S., Bigelow, J.D., Burck, J.M., Harshbarger, S.D., Kozlowski, M.V.: An overview of the developmental process for the modular prosthetic limb. Johns Hopkins APL Tech Dig. 30(3), 207–216 (2011)

    Google Scholar 

  64. Wodlinger, B., Downey, J.E., Tyler-Kabara, E.C., Schwartz, A.B., Boninger, M.L., Collinger, J.L.: Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12(1), 016011 (2015)

    Google Scholar 

  65. Fagg, A.H., et al.: Biomimetic brain machine interfaces for the control of movement. J. Neurosci. 27(44), 11842–11846 (2007)

    Google Scholar 

  66. Tan, D.W., Schiefer, M.A., Keith, M.W., Anderson, J.R., Tyler, J., Tyler, D.J.: A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6(257) (2014)

    Google Scholar 

  67. Venkatraman, S., Elkabany, K., Long, J.D., Yao, Y., Carmena, J.M.: A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans. Biomed. Eng. 56(1), 15–22 (2009)

    Google Scholar 

  68. Taylor, C.S.R., Gross, C.G.: Twitches versus movements: a story of motor cortex. Neuroscience. 9(5), 332–342 (2003)

    Google Scholar 

  69. Fritsch, G., Hitzig, E.: Über die elektrische Erregbarkeit des Grosshirns (Electric excitability of the cerebrum). Arch. für Anat. Physiol. und Wissenschaftliche Med. 37, 300–332 (1870)

    Google Scholar 

  70. Penfield, W., Boldrey, E.: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 60(4), 389–443 (1937)

    Google Scholar 

  71. Penfield, W., Rasmussen, T.: The Cerebral Cortex of Man; A Clinical Study of Localization of Function. Macmillan, Oxford (1950)

    Google Scholar 

  72. Schott, G.D.: Penfield’s homunculus: a note on cerebral cartography. J. Neurol. Neurosurg. Psychiatry. 56(4), 329 (1993)

    Google Scholar 

  73. Talbot, W.H., Mountcastle, B.: The sense of flutter-vibration : the human the monkey of mechanoreceptive comparison of capacity with response patterns aff erents from. J. Neurophysiol. 31(2), 301–334 (1968)

    Google Scholar 

  74. Fechner, G.T.: Elements of psychophysics [Elemente der Psychophysik], 1860. In: Readings in the History of Psychology, pp. 206–213. Rinehart and Winston, Holt (1966)

    Google Scholar 

  75. Fanselow, E.E., Nicolelis, M.A.: Behavioral modulation of tactile responses in the rat somatosensory system. J. Neurosci. 19(17), 7603–7616 (1999)

    Google Scholar 

  76. Ferezou, I., Haiss, F., Gentet, L.J., Aronoff, R., Weber, B., Petersen, C.C.H.: Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron. 56(5), 907–923 (2007)

    Google Scholar 

  77. Lee, S., Carvell, G.E., Simons, D.J.: Motor modulation of afferent somatosensory circuits. Nat. Neurosci. 11(12), 1430–1438 (2008)

    Google Scholar 

  78. Pinault, D.: A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods. 65(2), 113–136 (1996)

    Google Scholar 

  79. Choi, J.S., Brockmeier, A.J., McNiel, D.B., von Kraus, L.M., Príncipe, J.C., Francis, J.T.: Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation. J. Neural Eng. 13(5), 056007 (2016)

    Google Scholar 

  80. Weber, D.J.D.J., et al.: Limb-state information encoded by peripheral and central somatosensory neurons: implications for an afferent interface. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 501–513 (2011)

    Google Scholar 

  81. Romo, R., Hernández, A., Zainos, A., Brody, C.D., Lemus, L.: Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron. 26(1), 273–278 (2000)

    Google Scholar 

  82. Dadarlat, M.C., O’Doherty, J.E., Sabes, P.N.: A learning-based approach to artificial sensory feedback leads to optimal integration. Nat. Neurosci. 18(1), 138–144 (2015)

    Google Scholar 

  83. Berg, J.A., et al.: Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 21(3), 500–507 (2013)

    Google Scholar 

  84. Kim, S., Callier, T., Tabot, G.A., Gaunt, R.A., Tenore, F.V., Bensmaia, S.J.: Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex. Proc. Natl. Acad. Sci. 112(49), 15202–15207 (2015)

    Google Scholar 

  85. Bjanes, D.A., Moritz, C.T.: A robust encoding scheme for delivering artificial sensory information via direct brain stimulation. IEEE Trans. Neural Syst. Rehabil. Eng., 1–1 (2019)

    Google Scholar 

  86. London, B.B.M., Jordan, L.R.L., Jackson, C.R., Miller, L.E.: Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. Neural Syst. …. 16(1), 32–36 (2008)

    Google Scholar 

  87. Tehovnik, E.: Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods. 65(1), 1–17 (1996)

    Google Scholar 

  88. Mackevicius, E.L., Best, M.D., Saal, H.P., Bensmaia, S.J.: Millisecond precision spike timing shapes tactile perception. J. Neurosci. 32(44), 15309–15317 (2012)

    Google Scholar 

  89. Weber, A.I., et al.: Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl. Acad. Sci. U. S. A. 110(42), 17107–17112 (2013)

    Google Scholar 

  90. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods. 141(2), 171–198 (2005)

    Google Scholar 

  91. Shannon, R.V.: A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39(4), 424–426 (1992)

    Google Scholar 

  92. Rajan, A.T., et al.: The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior. J. Neural Eng. 12(6), 66018 (2015)

    Google Scholar 

  93. Ranck, J.B.: Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98(3), 417–440 (Nov. 1975)

    Google Scholar 

  94. Logothetis, N.K., et al.: The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci. 13(10), 1283–1291 (2010)

    Google Scholar 

  95. Kim, S., et al.: A computational model that predicts behavioral sensitivity to intracortical microstimulation. J. Neural Eng. 14(1), 016012 (2017)

    Google Scholar 

  96. Rousche, P., R. N.-A. of biomedical engineering, and undefined: A method for pneumatically inserting an array of penetrating electrodes into cortical tissue, Springer, 1992

    Google Scholar 

  97. Hughes, C.L., Flesher, S.N., Weiss, J.M., Downey, J.E., Boninger, M., Collinger, J.L., Gaunt, R.A.: Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. J Neural Eng. 18(4) (2021). https://doi.org/10.1088/1741-2552/ac18ad

  98. Hiremath, S.V., et al.: Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS One. 12(5), e0176020 (2017)

    Google Scholar 

  99. Ray, P.G., Meador, K.J., Smith, J.R., Wheless, J.W., Sittenfeld, M., Clifton, G.L.: Physiology of perception: cortical stimulation and recording in humans. Neurology. 52(5), 1044–1044 (1999)

    Google Scholar 

  100. Ohara, S., Weiss, N., Lenz, F.A.: Microstimulation in the region of the human thalamic principal somatic sensory nucleus evokes sensations like those of mechanical stimulation and movement. J. Neurophysiol. 91(2), 736–745 (2004)

    Google Scholar 

  101. Weiss, J.M., Flesher, S.N., Franklin, R., Collinger, J.L., Gaunt, R.A.: Artifact-free recordings in human bidirectional brain-computer interfaces. J. Neural Eng. 16(1) (2019)

    Google Scholar 

  102. Hashimoto, T., Elder, C.M., Vitek, J.L.: A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J. Neurosci. Methods. 113(2), 181–186 (2002)

    Google Scholar 

  103. O’Shea, D.J., Shenoy, K.V.: ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. J. Neural Eng. 15(2), 026020 (2018)

    Google Scholar 

  104. Godlove, J.M., Whaite, E.O., Batista, A.P.: Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control. J. Neural Eng. 11(4), 046025 (2014)

    Google Scholar 

  105. Caldwell, D.J., et al.: Direct stimulation of somatosensory cortex results in slower reaction times compared to peripheral touch in humans. Sci. Rep. 9(1), 3292 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Bjånes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bjånes, D.A., Moritz, C.T. (2023). Artificial Sensory Feedback to the Brain: Somatosensory Feedback for Neural Devices and BCI. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_111

Download citation

Publish with us

Policies and ethics

Navigation