Log in

Intrinsic time in Wheeler–DeWitt conformal superspace

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Intrinsic time in geometrodynamics is obtained using a scaled Dirac map**. By addition of a background metric, one can construct a scalar field which is suitable for the role of intrinsic time. The Cauchy problem was successfully solved in conformal variables because they are physical. Intrinsic time as a logarithm of the spatial metric determinant was first applied to a cosmological problem byMisner. Global time exists under the condition of a constant mean curvature slicing of spacetime. A coordinate volume of a hypersurface and the so-called York’s mean time are a canonical conjugated pair. So, the volume is intrinsic global time by its sense. The experimentally observed redshift in cosmology is an evidence of its existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Phys. Rev. 114, 924 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  2. V. Pervushin and A. Pavlov, Principles of Quantum Universe (Lambert Academic Publishing, Saarbrücken, 2014).

    Google Scholar 

  3. Chopin Soo and Hoi-Lai Yu, “General Relativity without paradigm of space-time covariance: sensible quantum gravity and resolution of the “problem of time,” ar**v: 1201.3164.

  4. Eyo Eyo Ita, Chopin Soo, and Hoi-Lai Yu, “Intrinsic time quantum geometrodynamics,” ar**v: 1501.06282.

  5. N. Ó Murchadha, Ch. Soo, and Hoi-Lai Yu, “Intrinsic time gravity and the Lichnerowicz–York equation,” Class. Quantum Grav. 30, 095016 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Huei-Chen Lin and Chopin Soo, Chinese J. Phys. 53, 110102–1 (2015).

    Google Scholar 

  7. V. Shyam and B. S. Ramachandra, “Presymplectic geometry and the problem of time. Part 1,” ar**v: 1209.5547.

  8. V. Shyam and B. S. Ramachandra, “Presymplectic geometry and the problem of time. Part 2,” ar**v: 1210.5619.

  9. V. Shyam, “Intrinsic time deparameterization of the canonical connection dynamics of general Relativity,” ar**v: 1212.0745.

  10. W. Heisenberg, Physics and Beyond: Encounters and Conversations (Harper and Row, New York, 1972).

    Google Scholar 

  11. P. A. M. Dirac, Proc. Roy. Soc. London A 246, 333 (1958).

    Article  ADS  Google Scholar 

  12. R. Arnowitt, S. Deser, and Ch. W. Misner, In: Gravitation: An Introduction to Current Research. Ed. L. Witten (Wiley, New York, 1962) p. 227.

  13. A. L. Zel’manov, Sov. Phys. Dokl. 227, 78 (1976).

    Google Scholar 

  14. Yu. S. Vladimirov, Reference Frames in Gravitation Theory (Energoizdat, Moscow, 1982, in Russian).

    Google Scholar 

  15. H. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Systems (Academia Nazionale dei Lincei, Roma, 1976).

    Google Scholar 

  16. B. S. De Witt, Phys. Rev. 160, 1113 (1967).

    Article  ADS  Google Scholar 

  17. A. A. Friedmann, World as Space and Time (Nauka, Moscow, 1965).

    Google Scholar 

  18. A. B. Arbuzov, R. G. Nazmitdinov, A. E. Pavlov, V. N. Pervushin, and A. F. Zakharov, Euro Phys. Letters 113, 31001 (2016).

    Article  ADS  Google Scholar 

  19. V. I. Ogievetsky, Lett. Nuovo Cim. 8, 988 (1973).

    Article  Google Scholar 

  20. M. K. Volkov and V. N. Pervushin, Essentially Nonlinear Quantum Theories, Dynamical Symmetries, and Physics of Pions (Atomizdat, Moscow, 1978).

    Google Scholar 

  21. A. B. Borisov and V. I. Ogievetsky, Theor. Math. Phys. 21, 1179 (1975).

    Article  Google Scholar 

  22. J. W. York, Phys. Rev. Lett. 28, 1082 (1972).

    Article  ADS  Google Scholar 

  23. E. Anderson, J. Barbour, B. Z. Foster, B. Kelleher, and N. Ó Murchadha, Class. Quantum Grav. 22, 1795 (2005).

    Article  ADS  Google Scholar 

  24. E. C. G. Stückelberg, Helv. Phys. Acta. 11, 225 (1938).

    Google Scholar 

  25. S. Deser, Ann. Phys. 59, 248 (1970).

    Article  ADS  Google Scholar 

  26. P. A. M. Dirac, Proc. Roy. Soc. London A 333, 403 (1973).

    Article  ADS  Google Scholar 

  27. B. M. Barbashov et al, Int. J. Mod. Phys. A 21, 5957 (2006).

    Article  ADS  Google Scholar 

  28. A. B. Arbuzov et al., Phys. Lett. B 691, 230 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Gomes, S. Gryb, and T. Koslowski, Class. Quantum Grav. 28, 045005 (2011).

    Article  ADS  Google Scholar 

  30. Y. Choquet-Bruhat and J. W. York, in General Relativity and Gravitation, Ed. A. Held (Plenum, New York, 1980), p. 99.

  31. A. Lichnerowicz, J. Math. Pures et Appl. 23, 37 (1944).

    Google Scholar 

  32. J. W. York, in Sources of Gravitational Radiation, Ed. L. L. Smarr (Cambridge University Press, Cambridge, 1979), p. 83.

  33. Y. Choquet-Bruhat, J. Isenberg, and J. W. York, Phys. Rev. D 61, 084034 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  34. J. A. Wheeler, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics, Ed. C. M. DeWitt and J. A. Wheeler (Benjamin, New York, 1968), p. 242.

  35. N. Rosen, Phys. Rev. 57, 147 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  36. R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, Phys. Rev. 126, 1864 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  37. J. A. Wheeler, Einstein’s Vision (Springer-Verlag, Berlin, 1968).

    Book  Google Scholar 

  38. C. Lanczos, The Variational Principles of Mechanics (Univ. of Toronto, Toronto, 1962).

    MATH  Google Scholar 

  39. Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  40. T. Regge and C. Teitelboim, Ann. Phys. 88, 286 (1974).

    Article  ADS  Google Scholar 

  41. P. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, Berlin, 1986).

    Book  MATH  Google Scholar 

  42. A. Pavlov, Int. J. Theor. Phys. 36, 2107 (1997).

    Article  Google Scholar 

  43. C. W. Misner, Phys. Rev. 186, 1319 (1969).

    Article  ADS  Google Scholar 

  44. E. Kasner, Am. J. Math. 43, 217 (1921).

    Article  Google Scholar 

  45. K. Kuchar, in The 4th Canadian Conference on General Relativity and Relativistic Astrophysics Eds. G. Kunstatter, D. Vincent, and J. Williams (World Scientific, Singapore, 1992), p. 1.

  46. C. J. Isham, “Canonical quantum gravity and the problem of time” (Lectures presented at the NATO Advanced Study Institute “Recent Problrms in Mathematical Physics,” Salamanca, 1992), grqc/9210011.

    MATH  Google Scholar 

  47. A. Pavlov, Phys. Lett. A 165, 211 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Pavlov, Phys. Lett. A165, 215 (1992).

  49. A. Pavlov, Int. J. Theor. Phys. 35, 2169 (1996).

    Article  Google Scholar 

  50. J. Isenberg, in: The Springer Handbook of Spacetime, Ed. A. Ashtekar and V. Petkov (Springer, Heidelberg, 2014); ar**v: 1304.1960.

  51. N. N. Gorobey and A. S. Lukyanenko, Theor. Math. Phys. 95, 766 (1993).

    Article  Google Scholar 

  52. K. Kuchař, in: Relativity, Astrophysics and Cosmology, Ed. W. Israel ( D. Reidel, Boston, 1973), p. 237.

  53. J. Isenberg and J. Nester, in: General Relativity and Gravitation, Ed. A. Held (Plenum Press, New York, 1980), p. 23.

  54. R. M. Wald, General Relativity (Univ. of Chicago Press, Chicago, 1984).

    Book  MATH  Google Scholar 

  55. É. Gorgoulhon, 3 + 1 Formalism in General Relativity. Bases of Numerical Relativity (Springer, Berlin 2012).

  56. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).

    Book  MATH  Google Scholar 

  57. M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in Casimir Effect (Oxford University Press, Oxford, 2009).

    Book  MATH  Google Scholar 

  58. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  59. R. Durrer, The Cosmic Micrawave Background (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  60. V. O. Solov’ev, Theor. Mah. Phys. 65, 1240 (1985).

    Article  Google Scholar 

  61. D. Müller and H. V. Fagundes, “Casimir energy density in closed hyperbolic universes,” gr-qc/0205050.

  62. D. Müller, H. V. Fagundes, and R. Opher, “Casimir energy in multiply connected static hyperbolic Universes,” gr-qc/0209103.

  63. L. P. Grishchuk, A. N. Petrov, and A. D. Popova, Commun. Math. Phys. 94, 379 (1984).

    Article  ADS  Google Scholar 

  64. A. Einstein, Sitzungsber. Berl. Akad. 1, 142 (1917).

    Google Scholar 

  65. A. F. Zakharov and V. N. Pervushin, Int. J. Mod. Phys. D 19, 1875 (2010).

    Article  ADS  Google Scholar 

  66. A. E. Pavlov, “Exact solutions of Friedmann equation for supernovae data,” ar**v: 1511.00226.

  67. A. E. Pavlov, “Intrinsic time in geometrodynamics: Introduction and application to Friedmann cosmology,” ar**v: 1606.09460.

  68. E. G. Mychelkin, Astrophys. Space Sci. 184, 235 (1991).

    Article  ADS  Google Scholar 

  69. S. C. Beluardi, and R. Ferraro, “Extrinsic time in quantum cosmology,” Phys. Rev. D 52, 1963 (1995).

  70. H. Gomes and T. Koslowski, “Frequently asked questions about shape dynamics,” ar**v: 1211.5878.

  71. Ph. Roser and A. Valentini, “Classical and quantum cosmology with York time,” ar**v: 1406.2036.

  72. D. E. Burlankov, Grav Cosmol. 21, 175 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  73. D. E. Burlankov, Grav Cosmol. 22, 64 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  74. J.-P. Hsu and V. N. Melnikov, “Epilogue,” in: Gravitation, Astrophysics, and Cosmology (Proc, 12th Asia–Pacific Int. Conf. on Gravitation, Astrophysics, and Cosmology), Eds. V. Melnikov and J.-P. Hsu (World Scientific, Singapore, 2016), p. 383.

    Google Scholar 

  75. J. Barbour, The End of Time. The Next Revolution in Physics (Oxford University Press, Oxford, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Pavlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A.E. Intrinsic time in Wheeler–DeWitt conformal superspace. Gravit. Cosmol. 23, 208–218 (2017). https://doi.org/10.1134/S0202289317030124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317030124

Navigation