Notes on Semiclassical Weyl Gravity

  • Chapter
  • First Online:
Gravity and the Quantum

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 187))

Abstract

In any quantum theory of gravity, it is of the utmost importance to recover the limit of quantum theory in an external spacetime. In quantum geometrodynamics (quantization of general relativity in the Schrödinger picture), this leads in particular to the recovery of a semiclassical (WKB) time which governs the dynamics of non-gravitational fields in spacetime. Here, we first review this procedure with special emphasis on conceptual issues. We then turn to an alternative theory - Weyl (conformal) gravity, which is defined by a Lagrangian that is proportional to the square of the Weyl tensor. We present the canonical quantization of this theory and develop its semiclassical approximation. We discuss in particular the extent to which a semiclassical time can be recovered and contrast it with the situation in quantum geometrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 137.14
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a review and reference to original articles, see [11].

  2. 2.

    Recall that the modern time standard is based on the hyperfine transitions in caesium-133.

  3. 3.

    English translation: “On a Natural Addition to the Foundation of the General Theory of Relativity”.

  4. 4.

    In his paper, Einstein acknowledges the help of the Austrian mathematician Wilhelm Wirtinger in his attempt. In a letter to Einstein sent one day after Einstein’s academy talk on which [7] is based, Wirtinger suggested as one possibility to use an action principle based on (17), see [8], p. 117.

  5. 5.

    The \(\varphi _{\nu }\) denote the components of the electromagnetic four-potential.

  6. 6.

    The original German reads ([8], p. 416): “Kurze Zusammenfassung: Es wird gezeigt, dass man entsprechend dem Weyl’schen Grundgedanken auf die objektive Existenz der Lichtkegel (Invarianz der Gleichung \(ds^2=0\)) alleine eine Invarianten-theorie gründen kann, die jedoch im Gegensatz zu Weyl’s Theorie keine Hypothese über Streckenübertragung enthält und in welcher die Potentiale \(\varphi _{\nu }\) nicht explizite in die Gleichungen eingehen. Ob die Theorie auf physikalische Gültigkeit Anspruch erheben kann, müssen spätere Untersuchungen ergeben.”.

  7. 7.

    We write “seems”, because the ghosts connected with non-unitarity may be removable [21].

  8. 8.

    For the history of such theories, see for example [28].

  9. 9.

    In quantum GR, there exist attempts to quantize solely the conformal factor [23]. Paddy has derived from this the interesting conclusion, that the Planck length provides a lower bound to measurable physical lengths. The situation will be different here, because Weyl gravity does not contain an intrinsic length scale.

  10. 10.

    It can be shown that terms in \(\left( \,^{\scriptscriptstyle (3)}\! R_{ij}^{\scriptscriptstyle \mathrm T}+D_{i}D_{j}\right) \bar{P}^{ij}\) which depend on a cancel, making this expression conformally invariant.

References

  1. R. Bach, Math. Z. 9, 110 (1921)

    Article  MathSciNet  Google Scholar 

  2. J. Barbour, in Quantum Field Theory and Gravity, ed. by F. Finster, et al. (Springer, Basel, 2012), p. 257

    Chapter  Google Scholar 

  3. D. Boulware, in Quantum Theory of Gravity, ed. by S.M. Christensen (Adam Hilger Ltd., Bristol, 1984), p. 267

    Google Scholar 

  4. D. Brizuela, C. Kiefer, M. Krämer, Phys. Rev. D 93, 104035 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Brotz, C. Kiefer, Nucl. Phys. B 475, 339 (1996)

    Article  ADS  Google Scholar 

  6. N. Deruelle, M. Sasaki, Y. Sendouda, D. Yamauchi, Prog. Theor. Phys. 123, 169 (2010)

    Article  ADS  Google Scholar 

  7. A. Einstein, Preuß. Akad. Wiss. (Berlin). Sitzungsberichte 261–264 (1921)

    Google Scholar 

  8. A. Einstein, Collected Papers, vol. 12 (Princeton University Press, Princeton, 2009)

    MATH  Google Scholar 

  9. D. Giulini, C. Kiefer, Class. Quantum Grav. 12, 403 (1995)

    Article  ADS  Google Scholar 

  10. J. Greensite, Nucl. Phys. B 351, 749 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  11. H.F.M. Goenner, Living Rev. Relativ. 7 (2016). http://www.livingreviews.org/lrr-2004-2. Accessed 13 July 2016

  12. M. Irakleidou, I. Lovrekovic, F. Preis, Phys. Rev. D 91, 104037 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Kiefer, Class. Quantum Grav. 4, 1369 (1987)

    Article  ADS  Google Scholar 

  14. C. Kiefer, in Canonical Gravity: From Classical to Quantum, ed. by J. Ehlers, H. Friedrich (Springer, Berlin, 1994), p. 170

    Google Scholar 

  15. C. Kiefer, Quantum Gravity, 3rd edn. (Oxford University Press, Oxford, 2012)

    MATH  Google Scholar 

  16. C. Kiefer, B. Nikolić, Conformal and Weyl-Einstein Gravity I. Classical Geometrodynamics (to be submitted) (2016)

    Google Scholar 

  17. C. Kiefer, B. Nikolić, Conformal and Weyl-Einstein Gravity II. Quantum Geometrodynamics (to be submitted) (2016)

    Google Scholar 

  18. C. Kiefer, T.P. Singh, Phys. Rev. D 44, 1067 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Kiefer, T. Padmanabhan, T.P. Singh, Class. Quantum Grav. 8, L185 (1991)

    Article  ADS  Google Scholar 

  20. J. Kluson̆, M. Oksanen, A. Tureanu, Phys. Rev. D 89, 064043 (2014)

    Google Scholar 

  21. J. Maldacena, Einstein Gravity from Conformal Gravity. ar**v:1105.5632v2 [hep-th]

  22. P.D. Mannheim, Found. Phys. 42, 388 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Padmanabhan, Ann. Phys. (N.Y.) 165, 38 (1985)

    Google Scholar 

  24. T. Padmanabhan, Phys. Rev. D 39, 2924 (1989)

    Article  ADS  Google Scholar 

  25. T. Padmanabhan, Pramana - J. Phys. 35, L199 (1990)

    Google Scholar 

  26. V. Perlick, C. Xu, Astrophys. J. 449, 47 (1995)

    Article  ADS  Google Scholar 

  27. B. Pitts, Ann. Phys. (N.Y.) 351, 382 (2014)

    Google Scholar 

  28. H.-J. Schmidt, Int. J. Geom. Methods Mod. Phys. 04, 209 (2007)

    Article  ADS  Google Scholar 

  29. T.P. Singh, T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989)

    Google Scholar 

  30. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  31. G. ’t Hooft, Int. J. Mod. Phys. D 24, 1543001 (2015)

    Google Scholar 

  32. H.D. Zeh, Phys. Lett. A 116, 9 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiefer, C., Nikolić, B. (2017). Notes on Semiclassical Weyl Gravity. In: Bagla, J., Engineer, S. (eds) Gravity and the Quantum. Fundamental Theories of Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-51700-1_11

Download citation

Publish with us

Policies and ethics

Navigation