Log in

Nonlinear programming strategies for dynamic chemical process optimization

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Problem formulations and algorithms are considered for optimization problems with differential-algebraic equation (DAE) models. In particular, we provide an overview of direct methods, based on nonlinear programming (NLP), and indirect, or variational, methods. We further classify each method and tailor it to the appropriate applications. For direct methods, we briefly describe current approaches including the sequential approach (or single shooting), multiple shooting method, and the simultaneous collocation (or direct transcription) approach. In parallel to these strategies we discuss NLP algorithms for these methods and discuss optimality conditions and convergence properties. In particular, we present the simultaneous collocation approach, where both the state and control variable profiles are discretized. This approach allows a transparent handling of inequality constraints and unstable systems. Here, large scale nonlinear programming strategies are essential and a novel barrier method, called IPOPT, is described. This NLP algorithm incorporates a number of features for handling large-scale systems and improving global convergence. The overall approach is Newton-based with analytic second derivatives and this leads to fast convergence rates. Moreover, it allows us to consider the extension of these optimization formulations to deal with nonlinear model predictive control and real-time optimization. To illustrate these topics we consider a case study of a low density polyethylene (LDPE) reactor. This large-scale optimization problem allows us to apply off-line parameter estimation and on-line strategies that include state estimation, nonlinear model predictive control and dynamic real-time optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pontryagin, V.V., Boltyanskii, Y., Gamkrelidze, R., and Mishchenko, E., The Mathematical Theory of Optimal Processes, New York: Interscience, 1962.

    Google Scholar 

  2. Bryson, A.E. and Ho, Y.C., Applied Optimal Control, New York: Hemisphere, 1975.

    Google Scholar 

  3. Cervantes, A.M. and Biegler, L.T., Optimization strategies for dynamic systems, in Encyclopedia of Optimization, Floudas, C.A. and Pardalos, P.M., Eds., Dordrecht: Kluwer, 2001.

    Google Scholar 

  4. Vassiliadis, V.S., Sargent, R.W.H., and Pantelides, C.C., Solution of a class of multistage dynamic optimization problems. Part I. Algorithmic framework, Ind. Eng. Chem. Res, 1994, vol. 33, pp. 2111–2122.

    Article  CAS  Google Scholar 

  5. Vassiliadis, V.S., Sargent, R.W.H., and Pantelides, C.C., Solution of a class of multistage dynamic optimization problems. Part II. Problems with path constraints, Ind. Eng. Chem. Res., 1994, vol. 33, pp. 2123–2133.

    Article  CAS  Google Scholar 

  6. Barton, P.I., Allgor, R.J., Feehery, W.F., and Galan, S., Dynamic optimization in a discontinuous world, Ind. Eng. Chem. Res., 1998, vol. 37, pp. 966–981.

    Article  CAS  Google Scholar 

  7. Ascher, U.M. and Petzold, L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia, Pa.: SIAM, 1998.

    Book  Google Scholar 

  8. Flores-Tlacuahuac, A., Biegler, L.T., and Saldivar-Guerra, E., Dynamic optimization of HIPS open-loop unstable polymerization reactors, Ind. Eng. Chem. Res., 2005, vol. 44, pp. 2659–2679.

    Article  CAS  Google Scholar 

  9. Bock, H.G., Recent advances in parameter identification techniques for O.D.E., in Numerical Treatment of Inverse Problem in Differential and Integral Equations, Heidelberg: Springer, 1983, pp. 95–121.

    Chapter  Google Scholar 

  10. Bock, H.G. and Plitt, K.J., A multiple shooting algorithm for direct solution of optimal control problems, Proc. 9th IFAC World Congr., Budapest, 1984.

    Google Scholar 

  11. Leineweber, D.B., Efficient Reduced SQP Methods for the Optimization of Chemical Processes Described by Large Sparse DAE Models, Heidelberg: Univ. of Heidelberg, 1999.

    Google Scholar 

  12. Betts, J.T. and Huffman, W.P., Application of sparse nonlinear programming to trajectory optimization, J. Guid. Control Dyn., 1992, vol. 15, pp. 198–206.

    Article  Google Scholar 

  13. Biegler, L.T., Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Processes, Philadelphia, Pa.: SIAM, 2010.

    Book  Google Scholar 

  14. Cervantes, A.M., Wachter, A., Tutuncu, R., and Biegler, L.T., A reduced space interior point strategy for optimization of differential algebraic systems, Compt. Chem. Eng., 2000, vol. 24, pp. 39–51.

    Article  CAS  Google Scholar 

  15. Reddien, G.W., Collocation at Gauss points as a discretization in optimal control, SIAM J. Control Optim., 1979, vol. 17, pp. 298–306.

    Article  Google Scholar 

  16. Cuthrell, J.E. and Biegler, L.T., Simultaneous optimization and solution methods for batch reactor control profiles, Comput. Chem. Eng., 1989, vol. 13, pp. 49–62.

    Article  CAS  Google Scholar 

  17. Hager, W.W., Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 2000, vol. 87, pp. 247–282.

    Article  Google Scholar 

  18. Kameswaran, S. and Biegler, L.T., Convergence rates for direct transcription of optimal control problems using collocation at Radau points, Comput. Optim. Appl., 2008, vol. 41, pp. 81–126.

    Article  Google Scholar 

  19. Betts, J.T. and Campbell, S.L., Discretize Then Optimize, M and CT-TECH-03—01 Technical Report, Boeing Company, 2003.

    Google Scholar 

  20. Wachter, A. and Biegler, L.T., On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Math. Program., 2006, vol. 106, pp. 25–57.

    Article  Google Scholar 

  21. Fiacco, A. and McCormick, G., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, New York: Wiley, 1968.

    Google Scholar 

  22. Duff, I.S., MA57—a code for the solution of sparse symmetric definite and indefinite systems, ACM Trans. Math. Software, 2004, vol. 30, pp. 118–144.

    Article  Google Scholar 

  23. Kiparissides, C., Seferlis, P., Mourikas, G., and Morris, A.J., Online optimizing control of molecular weight properties in batch free-radical polymerization reactors, Ind. Eng. Chem. Res., 2002, vol. 41, pp. 6120–6131.

    Article  CAS  Google Scholar 

  24. Zavala, V.M. and Biegler, L.T., Large-scale parameter estimation in low-density polyethylene tubular reactors, Ind. Eng. Chem. Res., 2006, vol. 45, pp. 7867–7881.

    Article  CAS  Google Scholar 

  25. Zavala, V.M., Laird, C.D., and Biegler, L.T., Interiorpoint decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems, Chem. Eng. Sci., 2008, vol. 63, p. 4834–4845.

    Article  CAS  Google Scholar 

  26. Zavala, V.M., Laird, C.D., and Biegler, L.T., A moving horizon estimation algorithm based on nonlinear programming sensitivity, J. Process Control, 2008, vol. 18, pp. 876–884.

    Article  CAS  Google Scholar 

  27. Zavala, V.M. and Biegler, L.T., The advanced step NMPC controller: stability, optimality and robustness, Automatica, 2009, vol. 45, pp. 86–93.

    Article  Google Scholar 

  28. Zavala, V.M. and Biegler, L.T., Nonlinear programming strategies for state estimation and model predictive control, Proc. Int. Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, Pavia, Italy, 2008.

    Google Scholar 

  29. Buchelli, A., Call, M.L., Brown, A.L., Bird, A., Hearn, S., and Hannon, J., Modeling fouling effects in LDPE tubular polymerization reactors. 1. Fouling thickness determination, Ind. Eng. Chem. Res., 2005, vol. 44, pp. 1474–1479.

    Article  CAS  Google Scholar 

  30. Engell, S., Feedback control for optimal process operation, J. Process Control, 2007, vol. 17, pp. 203–219.

    Article  CAS  Google Scholar 

  31. Biegler, L.T. and Zavala, V.M., Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization, Comput. Chem. Eng., 2009, vol. 33, pp. 575–582.

    Article  CAS  Google Scholar 

  32. Zavala, V.M. and Biegler, L.T., Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control, Comput. Chem. Eng., 2009, vol. 33, pp. 1735–1746.

    Article  CAS  Google Scholar 

  33. Biegler, L.T., An overview of simultaneous dynamic optimization strategies, Chem. Eng. Process., 2007, vol. 46, pp. 1043–1063.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz T. Biegler.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biegler, L.T. Nonlinear programming strategies for dynamic chemical process optimization. Theor Found Chem Eng 48, 541–554 (2014). https://doi.org/10.1134/S0040579514050157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514050157

Keywords

Navigation