Log in

Sigma-point and stochastic gradient descent approach to solving global self-optimizing controlled variables

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Direct numerical optimization for the global self-optimizing control (gSOC) problem has been recently attempted in the rigorous nonlinear programming (NLP) framework. Compared with the previous perturbation-based SOC approaches, the global scheme is of potential to obtain solutions with better performances, as the economics are evaluated via the rigorous nonlinear process model, rather than approximations using the Taylor expansion. The main obstacles for solving the NLP are, however, difficulties for the statistical computations for the cost and constrained variables. In this paper, we firstly introduce the sigma-point approach, which generates less and more efficient sampling points with linear complexity with respect to the uncertain variables, such that the computational load is eased. Furthermore, we incorporate the stochastic gradient descent algorithm to accelerate the search of optimal combination matrix, which can be carried out upon evaluations of only a few, rather than all, sampling points. The scheme, therefore, makes it possible to deal with problems that have high dimensional uncertain parameters and/or when a single evaluation of the cost is time-consuming. A batch reactor and a batch distillation column are investigated to show the usefulness of the presented ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Skogestad, J. Process Control, 10, 487 (2000).

    Article  CAS  Google Scholar 

  2. I. J. Halvorsen, S. Skogestad, J. C. Morud and V. Alstad, Ind. Eng. Chem. Res., 42, 3273 (2003).

    Article  CAS  Google Scholar 

  3. J. Jäschke, Y. Cao and V. Kariwala Annu. Rev. Control, 43, 199 (2017).

    Article  Google Scholar 

  4. V. Alstad and S. Skogestad, Ind. Eng. Chem. Res., 46, 846 (2007).

    Article  CAS  Google Scholar 

  5. V. Kariwala, Ind. Eng. Chem. Res., 46, 3629 (2007).

    Article  CAS  Google Scholar 

  6. V. Kariwala, Y. Cao and S. Janardhanan, Ind. Eng. Chem. Res., 47, 1150 (2008).

    Article  CAS  Google Scholar 

  7. V. Alstad, S. Skogestad and E. S. Hori, J. Process Control, 19, 138 (2009).

    Article  CAS  Google Scholar 

  8. L. Ye and Y. Cao, UKACC International Conference on Control, 136 (2012).

  9. L. Ye, Y. Cao, Y. Li and Z. Song, Ind. Eng. Chem. Res., 52, 798 (2013).

    Article  CAS  Google Scholar 

  10. L. Ye, Y. Cao, X. Ma and Z. Song, Ind. Eng. Chem. Res., 53, 14695 (2014).

    Article  CAS  Google Scholar 

  11. L. Ye, Y. Cao and Y. **ao, Ind. Eng. Chem. Res., 54, 12040 (2015).

    Article  CAS  Google Scholar 

  12. Z. Zhao, Y. Li, T. I. Salsbury and J. M. House, J. Dyn. Syst., Meas., Control, 144, 021008 (2022).

    Article  Google Scholar 

  13. H. Su, C. Zhou, Y. Cao, S.-H. Yang and Z. Ji, Syst. Sci. Control Eng., 10, 65 (2022).

    Article  Google Scholar 

  14. A. J. Wiid, J. D. le Roux and I. K. Craig, Comput.Chem. Eng., 145, 107178 (2021).

    Article  CAS  Google Scholar 

  15. Y. Liu, Y. Chang, F. Wang, D. Niu and L. Zhao, Chem. Eng. Res. Des., 177, 136 (2022).

    Article  CAS  Google Scholar 

  16. P. Shah, M. Z. Sheriff, M. S. F. Bangi, C. Kravaris, J.S.-I. Kwon, C. Botre and J. Hirota, Chem. Eng. J., 441, 135643 (2022).

    Article  CAS  Google Scholar 

  17. S. Kurz, H. De Gersem, A. Galetzka, A. Klaedtke, M. Liebsch, D. Loukrezis, S. Russenschuck and M. Schmidt, J. Math. Ind., 12, 1 (2022).

    Article  Google Scholar 

  18. D. Lee, A. Jayaraman and J.S. Kwon, PLoS Comput. Biol., 16, e1008472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. Ye, Y. Cao and S. Yang, Comput. Chem. Eng., 159, 107662 (2022).

    Article  CAS  Google Scholar 

  20. L. Ye, Y. Cao and S. Skogestad, The 20th World Congress of the International Federation of Automatic Control, Toulouse, France (2017).

  21. H. Manum and S. Skogestad, J. Process Control, 22, 873 (2012).

    Article  CAS  Google Scholar 

  22. D. Krishnamoorthy and S. Skogestad, Ind. Eng. Chem. Res., 58, 13555 (2019).

    Article  CAS  Google Scholar 

  23. H. M. Menegaz, J. Y. Ishihara, G. A. Borges and A. N. Vargas, IEEE Trans. Autom. Control, 60, 2583 (2015).

    Article  Google Scholar 

  24. D. P. Kingma and J. Ba, ar**v preprint ar**v:1412.6980 (2014).

  25. J. Hasenauer, S. Waldherr, M. Doszczak, N. Radde, P. Scheurich and F. Allgöwer, BMC Bioinformatics, 12, 1 (2011).

    Article  Google Scholar 

  26. D. Lee, A. Jayaraman and J.S.-I. Kwon, AIChE J., 66, e16925 (2020).

    CAS  Google Scholar 

  27. A. Narasingam, P. Siddhamshetty and J.S.-I. Kwon, Ind. Eng. Chem. Res., 57, 3977 (2018).

    Article  CAS  Google Scholar 

  28. D. **u, Numerical methods for stochastic computations: A spectral method approach, Princeton University Press (2010).

  29. E. A. Wan and R. Van Der Merwe, Proceedings of the IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium, 153 (2000).

  30. P. Toulis and E. M. Airoldi, The Ann. Statistics, 45, 1694 (2017).

    Article  Google Scholar 

  31. J. Duchi, E. Hazan and Y. Singer, J. Machine Learning Res., 12, 2121 (2011).

    Google Scholar 

  32. T. Tieleman and G. Hinton, RMSProp, COURSERA: Neural Networks for Machine Learning, Technical report (2012).

  33. D. Saad, Online Learning, 5, 6 (1998).

    Google Scholar 

  34. K. C. Kiwiel, Math. Programming, 90, 1 (2001).

    Article  Google Scholar 

  35. H. Lutkepohl, Handbook of Matrices, John Wiley & Sons, New York (1997).

    Google Scholar 

  36. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl, Mat. Programming Comput., 11, 1 (2019).

    Article  Google Scholar 

  37. B. Chachuat, B. Srinivasan and D. Bonvin, Comput. Chem. Eng., 33, 1557 (2009).

    Article  CAS  Google Scholar 

  38. B. Srinivasan, S. Palanki and D. Bonvin, Comput. Chem. Eng., 27, 1 (2003).

    Article  CAS  Google Scholar 

  39. L. T. Biegler and V. M. Zavala, Comput. Chem. Eng., 33, 575 (2009).

    Article  CAS  Google Scholar 

  40. L. Ye and S. Skogestad, Comput. Chem. Eng., 117, 451 (2018).

    Article  CAS  Google Scholar 

  41. L. Ye, F. Shen and H. Guan, J. Process Control, 113, 1 (2022).

    Article  CAS  Google Scholar 

  42. C. Welz, B. Srinivasan and D. Bonvin, Barcelona, Spain, 1586 (2004).

  43. L. Ye, Y. Cao, X. Yuan and Z. Song, IEEE Trans. Ind. Electron., 64, 4662 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61673349), Basic Public Welfare research Plan of Zhejiang Province (LGG19F030006) and Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems (2022-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjian Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Guan, H. & Ye, L. Sigma-point and stochastic gradient descent approach to solving global self-optimizing controlled variables. Korean J. Chem. Eng. 40, 1563–1574 (2023). https://doi.org/10.1007/s11814-023-1446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1446-7

Keywords

Navigation