Log in

Low-Temperature Formation and Identification of Biphasic Calcium Carbonate Phosphates

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Biphasic calcium carbonate phosphates comprised of amorphous calcium carbonate phosphate and carbonated hydroxyapatite were synthesized by wet precipitation at pH 9, Ca/P = 1.67, and \({\text{CO}}_{3}^{{2-}}\) concentrations of 0.60–0.90 mol/L under varying precipitation conditions. The wet formation of biphasic calcium carbonate phosphates includes a partial conversion of the amorphous phase into a mixture of carbonated hydroxyapatite and calcite, followed by leaching of calcite and constitutional Ca2+ and \({\text{CO}}_{3}^{{2-}}\) ions during long-term decantation. The identification of biphasic calcium carbonate phosphates involves complex analysis using a spectroscopic method to elucidate carbonate substitution schemes, an X-ray diffraction method to determine the degree of apatite amorphization, and thermoanalytical methods to detect the effects of crystallization of the amorphous phase. Variations in the preparation parameters provide a means for controlling the contents of both amorphous calcium carbonate phosphate and constitutional \({\text{CO}}_{3}^{{2-}}\)ions in biphasic calcium carbonate phosphates, which amounts determine their resorbability and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. H. Albee, Ann. Surg. 71, 32 (1920). https://doi.org/10.1097/00000658-192001000-00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. V. Dorozhkin, Progr. Biomater. 5, 9 (2016). https://doi.org/10.1007/s40204-015-0045-z

    Article  CAS  Google Scholar 

  3. I. E. Glazov, V. K. Krut’ko, A. I. Kulak, et al., MTComm. 47, 102224 (2021). https://doi.org/10.1016/j.mtcomm.2021.102224

    Article  CAS  Google Scholar 

  4. I. E. Glazov, V. K. Krut’ko, O. N. Musskaya, et al., Russ. J. Inorg. Chem. 67, 173 (2022). https://doi.org/10.1134/S0036023622020048

    Article  CAS  Google Scholar 

  5. M. S. Sridhar and P. Aramwit, et al., J. Biomater. Sci. Polymer. Ed. 33, 229 (2022). https://doi.org/10.1080/09205063.2021.1980985

    Article  CAS  Google Scholar 

  6. C. Combes and C. Rey, Acta Biomater. 6, 3362 (2010). https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  7. M. Mosina and J. Locs, Key Eng. Mater 850, 199 (2020). https://doi.org/10.4028/www.scientific.net/KEM.850.199

    Article  Google Scholar 

  8. S. V. Dorozhkin, Biomater. Sci. 6, 7748 (2021). https://doi.org/10.1039/D1BM01239H

    Article  Google Scholar 

  9. T. Sakae, H. Nakada, and J. P. LeGeros, J. Hard Tiss. Biol. 24, 111 (2015). https://doi.org/10.2485/jhtb.24.111

    Article  CAS  Google Scholar 

  10. M. Šupová, Ceram. Int. 41, 9203 (2015). https://doi.org/10.1016/j.ceramint.2015.03.316

    Article  CAS  Google Scholar 

  11. A. F. Schilling, W. Linhart, S. Filke, et al., Biomaterials 25, 3963 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.079

    Article  CAS  PubMed  Google Scholar 

  12. S. V. Dorozhkin, Ceram. Intern 42, 6529 (2016). https://doi.org/10.1016/j.ceramint.2016.01.062

    Article  CAS  Google Scholar 

  13. O. N. Musskaya, V. K. Krut’ko, A. I. Kulak, et al., Fiz. Khim. Asp. Izuch. Klast. Nanostrukt. Nanomater. 10, 468 (2018). https://doi.org/10.26456/pcascnn/2018.10.468

    Article  CAS  Google Scholar 

  14. C. J. S. Ibsen, D. Chernyshov, and H. Birkedal, Chem. Eur. J. 22, 12347 (2016). https://doi.org/10.1002/chem.201601280

    Article  CAS  PubMed  Google Scholar 

  15. S. Sun, D. M. Chevrier, P. Zhang, et al., Ang. Chem. Intern. Ed. 55, 12206 (2016). https://doi.org/10.1002/anie.201604179

    Article  CAS  Google Scholar 

  16. O. F. Yasar, W. C. Liao, B. Stevensson, et al., J. Phys. Chem. 125, 4675. https://doi.org/10.1021/acs.jpcc.0c10355

  17. D. J. Greenfield and E. D. Eanes, Calc. Tiss. Res. 9, 152 (1972). https://doi.org/10.1007/BF02061953

    Article  CAS  Google Scholar 

  18. Z. Zou, X. Yang, M. Alberic, et al., Adv. Funct. Mater. 30, 2000003 (2020). https://doi.org/10.1002/adfm.202000003

    Article  CAS  Google Scholar 

  19. Y. Li, F. Kong, and W. Weng, J. Biomed. Mater. Res. B 89, 508 (2009). https://doi.org/10.1002/jbm.b.31242

    Article  CAS  Google Scholar 

  20. Y. Li, D. Li, and W. Weng, Intern. J. Appl. Ceram. Tech. 5, 442 (2008). https://doi.org/10.1111/j.1744-7402.2008.02210.x

    Article  CAS  Google Scholar 

  21. Hadj. Bel, F. Yahi, and M. Jemal, Thermochim. Acta 505, 22 (2010). https://doi.org/10.1016/j.tca.2010.03.017

  22. A. Brangule and K. A. Gross, IOP Conf. Series: Mater. Sci. Eng. 77, 012027 (2015). https://doi.org/10.1088/1757-899X/77/1/012027/meta

    Article  Google Scholar 

  23. M. E. Fleet, X. Liu, and P. L. King, Am. Mineralogist 89, 1422 (2004). https://doi.org/10.2138/am-2004-1009

    Article  CAS  Google Scholar 

  24. J. C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (1994).

  25. R. Murugan and S. Ramakrishna, Acta Biomater. 2, 201 (2006). https://doi.org/10.1016/j.actbio.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  26. I. E. Glazov, V. K. Krut’ko, O. N. Musskaya, et al., Vestsi NAN Belarusi. Ser. Khim. Navuk 55, 391 (2019). https://doi.org/10.29235/1561-8331-2019-55-4-391-399

    Article  CAS  Google Scholar 

  27. C. Rey, B. Collins, T. Goechi, et al., Calc. Tiss. Int. 45, 157 (1989). https://doi.org/10.1007/BF02556059

    Article  CAS  Google Scholar 

  28. C. H. Yoder, M. M. Bollmeyer, K. R. Stepien, et al., Am. Mineralogist: J. Earth Planet. Mater. 104, 869 (2019). https://doi.org/10.2138/am-2019-6800

    Article  Google Scholar 

  29. V. K. Tsuber, L. A. Lesnikovich, A. I. Kulak, et al., Pharm. Chem. J. 40, 455 (2006). https://doi.org/10.1007/s11094-006-0151-2

    Article  CAS  Google Scholar 

  30. N. Doebelin and R. Kleeberg, J. Appl. Cryst. 48, 1573 (2015). https://doi.org/10.1107/S1600576715014685

    Article  CAS  Google Scholar 

  31. M. M. Tlili, M. Ben Amor, C. Gabrielli, et al., J. Raman Spectrosc. 33, 10 (2002). https://doi.org/10.1002/jrs.806

    Article  CAS  Google Scholar 

  32. P. J. Larkin, Infrared Raman Spectr. 7 (2018). https://doi.org/10.1016/B978-0-12-804162-8.00002-1

  33. G. M. Maggioni and M. Mazzotti, Faraday Discuss. 179, 359 (2015). https://doi.org/10.1039/C4FD00255E

    Article  CAS  PubMed  Google Scholar 

  34. N. Bano, S. S. Jikan, H. Basri, et al., AIP Conf. Proceed. 2068, 020100 (2019). https://doi.org/10.1063/1.5089399

    Article  CAS  Google Scholar 

  35. V. Uskoković, RSC Adv. 5, 36614 (2015). https://doi.org/10.1039/C4RA17180B

  36. J. Zhang, C. Shi, and Z. Zhang, Constr. Build. Mater. 223, 566 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.024

    Article  CAS  Google Scholar 

  37. Z. Z. Zyman, D. V. Rokhmistrov, V. I. Glushko, et al., J. Mater. Sci. Mater. Med. 20, 1389 (2009). https://doi.org/10.1007/s10856-009-3706-4

    Article  CAS  PubMed  Google Scholar 

  38. R. Othman, Z. Mustafa, C. W. Loon, et al., Proced. Chem. 19, 539 (2016). https://doi.org/10.1016/j.proche.2016.03.050

    Article  CAS  Google Scholar 

  39. J. P. Lafon, E. Champion, and D. Bernache-Assollant, J. Eur. Ceram. Soc. 28, 139 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.06.009

    Article  CAS  Google Scholar 

  40. Y. Sakhno, M. Iafisco, and D. Jaisi, JOM 73, 1044 (2021). https://doi.org/10.1007/s11837-021-04587-0

    Article  CAS  Google Scholar 

  41. K. Ishikawa, P. Ducheyne, and S. Radin, J. Mater. Sci. Mater. Med. 4, 165 (1993). https://doi.org/10.1007/BF00120386

    Article  CAS  Google Scholar 

  42. H. A. Bethe, Proc. R. Soc. London 150, 552 (1935). https://doi.org/10.1098/rspa.1935.0122

    Article  CAS  Google Scholar 

  43. B. Locardi, U. E. Pazzaglia, C. Gabbi, et al., Biomater. 14, 437 (1993). https://doi.org/10.1016/0142-9612(93)90146-S

    Article  CAS  Google Scholar 

  44. M. P. Schmidt, A. J. Ilott, B. J. Phillips, et al., Cryst. Growth Des. 14, 938 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the State Research Program “Chemical Processes, Reagents, and Technologies, Bioregulators and Bioorganic Chemistry” according to assignment 2.1.04.7 for 2021–2025 and by the National Academy of Sciences of Belarus through graduate students’ grant No. 2022-27-020 for 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Glazov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazov, I.E., Krut’ko, V.K., Musskaya, O.N. et al. Low-Temperature Formation and Identification of Biphasic Calcium Carbonate Phosphates. Russ. J. Inorg. Chem. 67, 1718–1730 (2022). https://doi.org/10.1134/S0036023622601313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601313

Keywords:

Navigation