Log in

Effect of Indium Microaddition on the Structure and Strengthening of Binary Al–Cu Alloys

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—Thermodynamic calculations performed with the Thermo-Calc software and experimental methods, in particular, the high-resolution transmission electron microscopy (TEM), are used to study the effect of indium microaddition on heat-treatment-induced changes of the phase composition and character of strengthening of the Al–1.5 wt % Cu and Al–3.5 wt % Cu alloys. The 0.1 wt % indium addition is shown to completely suppress the natural aging of the Al–3.5% Cu alloy. However, indium substantially intensifies the decomposition process of the aluminum solid solution (Al) during artificial aging; this determines the advantages of microalloyed compositions over the base alloys in both the time of reaching the peak strength and hardness. In particular, after aging to the peak strength, the hardness of the Al–3.5% Cu–0.1% In alloy is ~20% higher than that of the base alloy (124 HV against 105 HV), whereas the hardness of the Al–1.5% Cu–0.1% In alloy is more than 60% higher than that of the base Al–1.5% Cu alloy (59 HV against 37 HV). TEM analysis showed that the observed increase in the hardness during aging of the microalloyed compositions is due to the formation of substantially finer structure of aging products (the average linear size of the strengthening θ' phase decreases from 100 to 50 nm) along with the higher particle distribution density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. Sigli, F. De Geuser, A. Deschamps, J. Lépinoux, and M. Perez, “Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening,” C. R. Phys. 19 (8), 688–709 (2018). https://doi.org/10.1016/j.crhy.2018.10.012

    Article  CAS  Google Scholar 

  2. I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, “Physical metallurgy of aluminum alloys,” in Light Alloys: Metallurgy of the Light Metals, 5th ed. (Elsevier, Amsterdam, 2017), pp. 31–107. https://doi.org/10.1016/B978-0-08-099431-4.00002-6

  3. A. Gloria, R. Montanari, M. Richetta, and A. Varone, “Alloys for aeronautic applications: state of the art and perspectives,” Metals 9, 662 (2019). https://doi.org/10.3390/met9060662

    Article  CAS  Google Scholar 

  4. A. Kroupa, O. Zobač, and K. W. Richter, “The thermodynamic reassessment of the binary Al–Cu system,” J. Mater. Sci. 56, 3430–3443 (2021). https://doi.org/10.1007/s10853-020-05423-7

    Article  CAS  Google Scholar 

  5. S. Liu, E. Martínez, and J. Lorca, “Prediction of the Al-rich part of the Al–Cu phase diagram using cluster expansion and statistical mechanics,” Acta Mater. 195, 317–326 (2020). https://doi.org/10.1016/j.actamat.2020.05.018

    Article  CAS  Google Scholar 

  6. L. Zhu, C. Han, L. Hou, A. Gagnoud, Y. Fautrelle, Z. Ren, and X. Li, “Influence of a static magnetic field on the distribution of solute Cu and interdendritic constitutional undercooling in directionally solidified Al–4.5 wt % Cu alloy,” Mater. Let. 248, 73–77 (2019). https://doi.org/10.1016/j.matlet.2019.03.142

    Article  CAS  Google Scholar 

  7. L. Zhou, C. L. Wu, P. **e, F. J. Niu, W. Q. Ming, K. Du, and J. H. Chen, “A hidden precipitation scenario of the θ'-phase in Al–Cu alloys,” J. Mater. Sci. Technol. 75, 126–138 (2021). https://doi.org/10.1016/j.jmst.2020.09.039

    Article  Google Scholar 

  8. X.-H. Zhu, Y. C. Lin, Q. Wu, and Y.-Q. Jiang, “Effects of aging on precipitation behavior and mechanical properties of a tensile deformed Al–Cu alloy,” J. Alloys Compd. 843, 155975 (2020). https://doi.org/10.1016/j.jallcom.2020.155975

    Article  CAS  Google Scholar 

  9. L. I. Kaigorodova, D. Yu. Rasposienko, V. G. Pushin, and V. P. Pilyugin, “Structural and phase transformations in Al–Li–Cu–Mg–Zr–Sc–Zn alloy upon storage after megaplastic deformation,” Phys. Met. Metallogr. 120, 1200–1206 (2019).

    Article  CAS  Google Scholar 

  10. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).

    Article  CAS  Google Scholar 

  11. Q. Li, Y. Zhang, Y. Lan, R. Pei, X. Feng, T. **a, and D. Liu, “Effect of scandium addition on microstructure and mechanical properties of as-cast Al–5% Cu alloys,” Vacuum 177, 109385 (2020). https://doi.org/10.1016/j.vacuum.2020.109385

    Article  CAS  Google Scholar 

  12. I. Poon, R. K. W. Marceau, J. **a, X. Z. Liao, and S. P. Ringer, “Precipitation processes in Al–Cu–Mg–Sn and Al–Cu–Mg–Sn–Ag,” Mater. Des. 96, 385–391 (2016). https://doi.org/10.1016/j.matdes.2016.02.048

    Article  CAS  Google Scholar 

  13. F. Lotter, D. Petschke, T. E. M. Staab, U. Rohrmann, T. Schubert, G. Sextl, and B. Kieback, “The influence of trace elements (In, Sn) on the hardening process of Al–Cu alloys,” Phys. Status Solidi A 215, 1800038 (2018). https://doi.org/10.1002/pssa.201800038

    Article  CAS  Google Scholar 

  14. Y. Hu, G. Wang, M. Ye, S. Wang, L. Wang, and Y. Rong, “A precipitation hardening model for Al–Cu–Cd alloys,” Mater. Des. 151, 123–132 (2018). https://doi.org/10.1016/j.matdes.2018.04.057

    Article  CAS  Google Scholar 

  15. L. Bourgeois, C. Dwyer, M. Weyland, J.-F. Nie, and B. C. Muddle, “The magic thicknesses of θ' precipitates in Sn-microalloyed Al–Cu,” Acta Mater. 60 (2), 633–644 (2012). https://doi.org/10.1016/j.actamat.2011.10.015

    Article  CAS  Google Scholar 

  16. G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci, and A. Catalano, “The effects of cadmium toxicity,” Int. J. Environ. Res. Publ. Health 17 (11), 3782 (2020). https://doi.org/10.3390/ijerph17113782

    Article  CAS  Google Scholar 

  17. I. J. Polmear, “Role of trace elements in aged aluminum-alloys,” Mater. Sci. Forum 13–14, 195–214 (1987). https://doi.org/10.4028/www.scientific.net/MSF.13-14.195

    Article  Google Scholar 

  18. G. Wang, Q. Sun, L. Shan, Z. Zhao, and L. Yan, “Influence of Indium trace addition on the precipitation behavior in a 357 cast aluminum alloy,” J. Mater. Eng. Perform. 16, 752–756 (2007). https://doi.org/10.1007/s11665-007-9086-3

    Article  CAS  Google Scholar 

  19. F. Lotter, D. Petschke, F. De Geuser, M. Elsayed, G. Sextl, and T. E.M. Staab, “In situ natural ageing of Al–Cu–(Mg) alloys: the effect of In and Sn on the very early stages of decomposition,” Scr. Mater. 168, 104–107 (2019). https://doi.org/10.1016/j.scriptamat.2019.04.031

    Article  CAS  Google Scholar 

  20. M. Liu, X. Zhang, B. Körner, M. Elsayed, Z. Liang, D. Leyvraz, and J. Banhart, “Effect of Sn and In on the natural ageing kinetics of Al–Mg–Si alloys,” Materialia 6, 100261 (2019). https://doi.org/10.1016/j.mtla.2019.100261

    Article  CAS  Google Scholar 

  21. S. P. Ringer, K. Hono, and T. Sakurai, “Nucleation and growth of θ' precipitation in Sn-modified Al–Cu alloys: APFIM/TEM observations,” Appl. Surf. Sci. 87–88, 223–227 (1995). https://doi.org/10.1016/0169-4332(94)00514-1

    Article  Google Scholar 

  22. Thermo-Calc Software TCAl4 Al-Alloys v. 4.0. http://www.thermocalc.com. Accessed January 22, 2021.

  23. L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth, London, 1976; Metallurgiya, Moscow, 1979).

  24. T. K. Akopyan, N. A. Belov, and N. V. Letyagin, “Effect of trace addition of Sn on the precipitation hardening in Al–Si–Cu eutectic alloy,” JOM 71, 1768–1775 (2019). https://doi.org/10.1007/s11837-019-03422-x

    Article  CAS  Google Scholar 

  25. U. U. Entoni, F. R. Eliot, and M. D. Boll, Aluminum. Properties and Physical Metal Science: A Handbook, Ed. by J. E. Hatch (AMS International, Metals Park, OH, 1984; Metallurgiya, Moscow, 1989).

  26. J. F. Nie and B. C. Muddle, “Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates,” Acta Mater. 56 (14), 3490–3501 (2008). https://doi.org/10.1016/j.actamat.2008.03.028

    Article  CAS  Google Scholar 

  27. C. Wolverton, “Solute–vacancy binding in aluminum,” Acta Mater. 55, 5867–5872 (2007). https://doi.org/10.1016/j.actamat.2007.06.039

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 20-79-10373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Shurkin.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurkin, P.K., Akopyan, T.K. & Letyagin, N.V. Effect of Indium Microaddition on the Structure and Strengthening of Binary Al–Cu Alloys. Phys. Metals Metallogr. 122, 807–813 (2021). https://doi.org/10.1134/S0031918X21080159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21080159

Keywords:

Navigation