Log in

Effect of Hormones and Biogenic Amines on Growth and Survival of Enterococcus durans

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are important components of the human microbiome. While they are capable both of synthesis and response to the signals of the human humoral regulatory system (hormones and neuromediators), the phenomenology and mechanisms of the LAB response to these mediators are insufficiently studied. This work showed estrogen to hinder the growth and development of E. durans, while norepinephrine, estrogen, and the brain natriuretic peptide caused dose-dependent extension of the stationary growth phase. This is the first report on stimulation of E. durans biofilm formation by the atrial natriuretic peptide and estrogen. The frequency of persister formation depended on the type of bacterial growth (planktonic or biofilm one) and was higher in the case of biofilm growth. Epinephrine and norepinephrine exhibited dose-dependent stimulation of persister formation in planktonic LAB cultures, while other tested hormones inhibited it. The effect on persister formation in biofilms was different: natriuretic peptides exhibited dose-dependent stimulation of persister formation, and none of the hormones inhibited it significantly. After several months of incubation, E. durans persister cells matured to anabiotic dormant forms with the typical ultrastructural features. The population of E. durans dormant forms was first shown to contain the form with different dormancy depth, including the viable uncultured ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ayrapetyan, M., Williams, T., and Oliver, J.D., Bridging the gap between viable but non-culturable and antibiotic persistent bacteria, Trends Microbiol., 2015, vol. 23, pp. 7–13. https://doi.org/10.1016/j.tim.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  2. Ayrapetyan, M., Williams, T., and Oliver, J.D., Relationship between the viable but nonculturable state and antibiotic persister cells, J. Bacteriol., 2018, vol. 200, art. e00249-18. https://doi.org/10.1128/JB.00249-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bacteria as Multicellular Organisms, Shapiro, J.A. and Dworkin, M., Eds., Oxford Univ. Press, 1997.

    Google Scholar 

  4. Balaban, N., Merrin, I., Chait, R., Kowalik, L., and Leibler, S., Bacterial persistence as a phenotypic switch, Science, 2004, vol. 305, pp. 1622‒1625.

    Article  CAS  PubMed  Google Scholar 

  5. Balaban, N.Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D.I., Brynildsen, M.P., Bumann, D., Camilli, A., Collins, J.J., Dehio, C., Fortune, S., Ghigo, J.-M., Hardt, W.-D., Harms, A., et al., Definitions and guidelines for research on antibiotic persistence, Nat. Rev. Microbiol., 2019, vol. 17, pp. 441–448. https://doi.org/10.1038/s41579-019-0196-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baquero, F. and Levin, B.R., Proximate and ultimate causes of the bactericidal action of antibiotics, Nat. Rev. Microbiol., 2021, vol. 19, pp. 123–132. https://doi.org/10.1038/s41579-020-00443-1

    Article  CAS  PubMed  Google Scholar 

  7. Bigger, J.W., Treatment of staphylococcal infections with penicillin by intermittent sterilisation, Lancet, 1944, vol. 244, pp. 497–500. https://doi.org/10.1016/S0140-6736(00)74210-3

    Article  Google Scholar 

  8. Bukharin, O.V., Gintsburg, A.L., Romanova, Yu.M., and El’-Registan, G.I., Mekhanizmy vyzhivaniya bakterii (Mechanisms of Bacterial Survival), Moscow: Meditsina, 2005.

  9. Canas-Duarte, S.J., Restrepo, S., and Pedraza, J.M., Novel protocol for persister cells isolation, PLoS One, 2014, vol. 9, art. e88660. https://doi.org/10.1371/journal.pone.0088660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chebotar, I.V., Emelyanova, M.A., Bocharova, J.A., Mayansky, N.A., Kopantseva, E.E., and Mikhailovich, V.M., The classification of bacterial survival strategies in the presence of antimicrobials, Microb. Pathog., 2021, vol. 155, art. 104901. https://doi.org/10.1016/j.micpath.2021.104901

    Article  CAS  PubMed  Google Scholar 

  11. Colwell, R.R., Brayton, P.R., Grimes, D.J., Roszak, D.B., Huq, S.A., and Palmer, L.M., Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms, Nat. Biotechnol., 1985, vol. 3, pp. 817–820. https://doi.org/10.1038/nbt0985-817

    Article  Google Scholar 

  12. Dadinova, L.A., Chesnokov, Y.M., Kamyshinsky, R.A., Orlov, I.A., Petoukhov, M.V., Mozhaev, A.A., Soshins-kaya, E.Yu., Lazarev, V.N., Manuvera, V.A., Orekhov, A.S., Vasiliev, A.L., and Shtykova, E.V., Protective Dps-DNA co-crystallization in stressed cells: an in vitro structural study by small-angle X-ray scattering and cryo-electron tomography, FEBS Lett., 2019, vol. 593, pp. 1360‒1371. https://doi.org/10.1002/1873-3468.13439

    Article  CAS  PubMed  Google Scholar 

  13. El-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Gal’chenko, V.F., Suzina, N.E., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, pp. 380‒389.

    Article  CAS  Google Scholar 

  14. Fuqua, W.C., Winans, S.C., and Greenberg, E.P., Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators, J. Bacteriol., 1994, vol. 176, pp. 269–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golod, N.A., Loiko, N.G., Mulyukin, A.L., Neiymatov, A.L., Vorobjeva, L.I., Suzina, N.E., Shanenko, E.F., Gal’chenko, V.F., and El-Registan, G.I., Adaptation of lactic acid bacteria to unfavorable growth conditions, Microbiology (Moscow), 2009, vol. 78, pp. 280‒289.

    Article  CAS  Google Scholar 

  16. Kaldalu, N., Hauryliuk, V., Turnbull, K.J., La Mensa, A., Putrinš, M., and Tenson, T., In vitro studies of persister cells, Microbiol. Mol. Biol. Rev., 2020, vol. 84, art. e00070-20. https://doi.org/10.1128/MMBR.00070-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaldalu, N., Joers, A., Ingelman, H., and Tenson, T., A general method for measuring persister levels in Escherichia coli cultures, Methods Mol. Biol., 2016, vol. 1333, pp. 29–42. https://doi.org/10.1007/978-1-4939-2854-5_3

    Article  CAS  PubMed  Google Scholar 

  18. Kaprelyants, A.S., Mukamolova, G.V., and Kell, D.B., Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cellfree spent medium at high dilution, FEMS Microbiol. Lett., 1994, vol. 115, pp. 347–352.

    Article  Google Scholar 

  19. Kaushik, V., Sharma, S., Tiwari, M., and Tiwari, V., Antipersister strategies against stress induced bacterial persistence, Microb. Pathog., 2022, vol. 164, art. 105423. https://doi.org/10.1016/j.micpath.2022.105423

    Article  CAS  PubMed  Google Scholar 

  20. Kell, D.B., Kaprelyants, A.S., Weichart, D.H., Harwood, C.R., and Barer, M.R., Viability and activity in readily culturable bacteria: a review and discussion of the practical issues, Antonie van Leeuwenhoek, 1998, vol. 73, pp. 169–187. https://doi.org/10.1023/A:1000664013047

    Article  CAS  PubMed  Google Scholar 

  21. Kim, J.S., Chowdhury, N., Yamasaki, R., and Wood, T.K., Viable but non-culturable and persistence describe the same bacterial stress state, Environ. Microbiol., 2018, vol. 20, pp. 2038–2048. https://doi.org/10.1111/1462-2920.14075

    Article  CAS  PubMed  Google Scholar 

  22. Krawczyk, A.O., de Jong, A., Omony, J., Holsappel, S., Wells-Bennik, M.H.J., Kuipers, O.P., and Eijlander, R.T., Spore heat activation requirements and germination responses correlate with sequences of germinant receptors and with the presence of a specific spoVA2mob operon in foodborne strains of Bacillus subtilis, Appl. Environ. Microbiol., 2017, vol. 83. https://doi.org/10.1128/AEM.03122-16

  23. Lewis, K., Persister cells, Annu. Rev. Microbiol., 2010, vol. 64, pp. 357‒372.

    Article  CAS  PubMed  Google Scholar 

  24. Loiko, N.G., Kozlova, A.N., Nikolaev, Y.A., Gaponov, A.M., Tutel’yan, A.V., and El’-Registan, G.I., Effect of stress on emergence of antibiotic-tolerant Escherichia coli cells, Microbiology (Moscow), 2015, vol. 84, pp. 595‒609.

    Article  CAS  Google Scholar 

  25. Loiko, N.G., Krasnova, M.A., Pichugina, T.V., Gr-inevich, A.I., Ganina, V.I., Kozlova, A.N., Niko-laev, Yu.A., Gal’chenko, V.F., and El’-Registan, G.I., Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment, Microbiology (Moscow), 2014, vol. 83, pp. 195‒204.

    Article  CAS  Google Scholar 

  26. Lyte, M., Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to brain-communication, PharmaNutrition, 2013, vol. 1, pp. 35‒39.

    Article  CAS  Google Scholar 

  27. Lyte, M., The effect of stress on microbial growth, Anim. Health Res. Rev., 2014, vol. 15, pp. 172‒174. https://doi.org/10.1017/S146625231400019X

    Article  PubMed  Google Scholar 

  28. Lyte, M., The microbial organ in the gut as a driver of homeostasis and disease, Med. Hypotheses, 2010, vol. 74, pp. 634–638.

    Article  PubMed  Google Scholar 

  29. Maisonneuve, E. and Gerdes, K., Molecular mechanisms underlying bacterial persisters, Cell, 2014, vol. 157, pp. 539–548. https://doi.org/10.1016/j.cell.2014.02.050

    Article  CAS  PubMed  Google Scholar 

  30. Markova, N., Slavchev, G., Michailova, L., and Jourdanova, M., Survival of Escherichia coli under lethal heat stress by L-form conversion, Int. J. Biol. Sci., 2010, vol. 6, pp. 303‒315. https://doi.org/10.7150/ijbs.6.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukamolova, G.V., Kaprelyants, A.S., and Kell, D.B., Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase, Antonie Van Leeuwenhoek, 1995, vol. 67, pp. 289–295.

    Article  CAS  PubMed  Google Scholar 

  32. Mulyukin, A.L., Pogorelova, A.Yu., El-Registan, G.I., Suzina, N.E., Duda, V.I., and Antonyuk, L.P., Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense, Microbiology (Moscow), 2009, vol. 78, pp. 33‒41.

    Article  CAS  Google Scholar 

  33. Mulyukin, A.L., Suzina, N.E., Mel’nikov, V.G., Gal’chenko, V.F., and El’-Registan, G.I., Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum, Microbiology (Moscow), 2014, vol. 83, pp. 149‒159.

    Article  CAS  Google Scholar 

  34. Oleskin, A.V., El’-Registan, G.I., and Shenderov, B.A., Role of neuromediators in the functioning of the human microbiota: “business talks” among microorganisms and the microbiota-host dialogue, Microbiology (Moscow), 2016, vol. 85, pp. 1‒22.

    Article  CAS  Google Scholar 

  35. Oleskin, A.V., Kirovskaya, T.A., Botvinko, I.V., and Lysak, L.V., Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms, Microbiology (Moscow), 1998, vol. 67, pp. 251‒257.

    CAS  Google Scholar 

  36. Oleskin, A.V., Shenderov, B.A., and Rogovskii, V.S., Sotsial’nost’ mikroorganizmov i vzaimootnosheniya v sisteme mikrobiotakhozyain: rol’ neiromediatorov (Sociality of Microorganisms and Relations in the Microbiota-Host System: Role of Neuromediators), Moscow: Mos. Gos. Univ., 2020.

  37. O’Toole, G.A., Microtiter dish biofilm formation assay, J. Visual. Exper., 2011, vol. 47, p. 2437.

    Google Scholar 

  38. Pogorelova, A.Y., Mulyukin, A.L., Galchenko, V.F., El’-Registan, G.I., and Antonyuk, L.P., Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: association with dormancy and characteristics of the variants, Microbiology (Moscow), 2009, vol. 78, pp. 559‒568.

    Article  CAS  Google Scholar 

  39. Salina, E.G., Grigorov, A.S., Bychenko, O.S., Skvortsova, Y.V., Mamedov, I.Z., Azhikina, T.L., and Kaprelyants, A.S., Resuscitation of dormant “non-culturable” Mycobacterium tuberculosis is characterized by immediate transcriptional burst, Front. Cell Infect. Microbiol., 2019, vol. 9, p. 272. https://doi.org/10.3389/fcimb.2019.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shleeva, M.O., Salina, E.G., and Kaprelyants, A.S., Dormant forms of mycobacteria, Microbiology (Moscow), 2010, vol. 79, pp. 1‒12.

    Article  CAS  Google Scholar 

  41. Song, S. and Wood, T.K., “Viable but non-culturable cells” are dead, Environ. Microbiol., 2021, vol. 23, pp. 2335–2338. https://doi.org/10.1111/1462-2920.15463

    Article  PubMed  Google Scholar 

  42. Strahl, H. and Errington, J., Bacterial membranes: structure, domains, and function, Annu. Rev. Microbiol., 2017, vol. 71, pp. 519–538.

    Article  CAS  PubMed  Google Scholar 

  43. Svenningsen, M.S., Veress, A., Harms, A., Mitarai, N., and Semsey, S., Birth and resuscitation of (p)ppGpp induced antibiotic tolerant persister cells, Sci. Rep., 2019, vol. 9, art. 6056. https://doi.org/10.1038/s41598-019-42403-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van den Bergh, B., Fauvart, M., and Michiels, J., Formation, physiology, ecology, evolution and clinical importance of bacterial persisters, FEMS Microbiol. Rev., 2017, vol. 41, pp. 219‒251. https://doi.org/10.1093/femsre/fux001

    Article  CAS  PubMed  Google Scholar 

  45. Wainwright, J., Hobbs, G., and Nakouti, I., Persister cells: formation, resuscitation and combative therapies, Arch. Microbiol., 2021, vol. 203, pp. 5899–5906. https://doi.org/10.1007/s00203-021-02585-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiradiputra, M.R.D., Khuntayaporn, P., Thirapanmethee, K., and Chomnawang, M.T., Toxin-antitoxin systems: a key role on persister formation in Salmonella enterica serovar typhimurium, Infect. Drug Resist., 2022, vol. 15, pp. 5813–5829. https://doi.org/10.2147/IDR.S378157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron microscopy was carried out using the equipment of the UNIQEM Microbial Collection Joint Use Center, Research Center of Biotechnology, Russian Academy of Sciences.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nikolaev.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El’-Registan, G.I., Zemskova, O.V., Galuza, O.A. et al. Effect of Hormones and Biogenic Amines on Growth and Survival of Enterococcus durans. Microbiology 92, 517–533 (2023). https://doi.org/10.1134/S0026261723600866

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723600866

Keywords:

Navigation