Log in

Perspectives on the involvement of the gut microbiota in salt-sensitive hypertension

  • Review Article
  • Published:
Hypertension Research Submit manuscript

Abstract

Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carey RM, Moran AE, Whelton PK. Treatment of hypertension: a review. JAMA. 2022;328:1849.

    Article  CAS  PubMed  Google Scholar 

  2. **e Y, Qi H, Peng W, Li B, Wen F, Zhang F, et al. SNPs in lncRNA KCNQ1OT1 modulate its expression and confer susceptibility to salt sensitivity of blood pressure in a Chinese Han population. Nutrients. 2022;14:3990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mente A, O’Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet. 2018;392:496–506.

    Article  PubMed  Google Scholar 

  4. Lu X, Crowley SD. Inflammation in salt-sensitive hypertension and renal damage. Curr Hypertens Rep. 2018;20:103.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu Q, Yang H, Zheng Q, Chen Q, Li X, Guo J. κ-Opioid receptors improve vascular endothelial dysfunction in salt-sensitive hypertension via PI3K/Akt/eNOS signaling pathway. Oxid Med Cell Longev. 2023;2023:1–13.

    CAS  Google Scholar 

  6. DeLalio LJ, Sved AF, Stocker SD. Sympathetic nervous system contributions to hypertension: updates and therapeutic relevance. Can J Cardiol. 2020;36:712–20.

    Article  PubMed  Google Scholar 

  7. Ayuzawa N, Fujita T. The mineralocorticoid receptor in salt-sensitive hypertension and renal injury. J Am Soc Nephrol. 2021;31:279–89.

    Article  Google Scholar 

  8. Manosroi W, Williams GH. Genetics of human primary hypertension: focus on hormonal mechanisms. Endocr Rev. 2018;40:825–56.

    Article  PubMed Central  Google Scholar 

  9. Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol. 2014;25:1148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang X-F, Wang H, Huang Y, Huang J-H, Ren H-L, Xu Q, et al. Myeloid angiotensin II type 1 receptor mediates macrophage polarization and promotes vascular injury in DOCA/salt hypertensive mice. Front Pharm. 2022;13:879693.

    Article  CAS  Google Scholar 

  11. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  12. Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561:45–56.

    Article  CAS  PubMed  Google Scholar 

  13. ** M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med. 2019;23:2343–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu X-Y, Li J, Zhang Y, Fan L, **a Y, Wu Y, et al. Kidney microbiota dysbiosis contributes to the development of hypertension. Gut Microbes. 2022;14:2143220.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chakraborty S, Mandal J, Cheng X, Galla S, Hindupur A, Saha P, et al. Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt-sensitive hypertension and renal damage. Hypertension. 2020;76:59–72.

    Article  CAS  PubMed  Google Scholar 

  17. Bier A, Braun T, Khasbab R, Di Segni A, Grossman E, Haberman Y, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10:1154.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abais-Battad JM, Saravia FL, Lund H, Dasinger JH, Fehrenbach DJ, Alsheikh AJ, et al. Dietary influences on the Dahl SS rat gut microbiota and its effects on salt-sensitive hypertension and renal damage. Acta Physiol. 2021;232:e13662.

    Article  CAS  Google Scholar 

  19. Palmu J, Lahti L, Niiranen T. Targeting gut microbiota to treat hypertension: a systematic review. Int J Environ Res Public Health. 2021;18:1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Zhu Y, Wu C, Lu A, Deng M, Yu H, et al. Gut dysbiosis contributes to high fructose-induced salt-sensitive hypertension in Sprague-Dawley rats. Nutrition. 2020;75–76:110766.

    Article  PubMed  Google Scholar 

  22. Waghulde H, Cheng X, Galla S, Mell B, Cai J, Pruett-Miller SM, et al. Attenuation of microbiotal dysbiosis and hypertension in a CRISPR/Cas9 gene ablation rat model of GPER1. Hypertension. 2018;72:1125–32.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Zhong S-J, Hu S-Y, Cheng B, Qiu H, Hu Z-X. Changes of gut microbiome composition and metabolites associated with hypertensive heart failure rats. BMC Microbiol. 2021;21:141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mei X, Mell B, Manandhar I, Aryal S, Tummala R, Kyoung J, et al. Repurposing a drug targeting inflammatory bowel disease for lowering hypertension. JAHA. 2022;11:e027893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, et al. The gut microbiome in hypertension: recent advances and future perspectives. Circ Res. 2021;128:934–50.

    Article  CAS  PubMed  Google Scholar 

  26. Liu P, Wang Y, Yang G, Zhang Q, Meng L, **n Y, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165:105420.

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki K, Sasaki D, Hannya A, Tsubota J, Kondo A. In vitro human colonic microbiota utilises D-β-hydroxybutyrate to increase butyrogenesis. Sci Rep. 2020;10:8516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexander C, Swanson KS, Fahey GC, Garleb KA. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv Nutr. 2019;10:576–89.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, et al. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: a randomized, double-blind, placebo-controlled trial. Hypertension. 2020;76:73–79.

    Article  CAS  PubMed  Google Scholar 

  30. Muralitharan RR, Jama HA, **e L, Peh A, Snelson M, Marques FZ. Microbial peer pressure: the role of the gut microbiota in hypertension and its complications. Hypertension. 2020;76:1674–87.

    Article  CAS  PubMed  Google Scholar 

  31. Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10:946–56.

    Article  CAS  PubMed  Google Scholar 

  32. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    Article  CAS  PubMed  Google Scholar 

  33. Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 2018;9:3555.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qiu M, Shu H, Li L, Shen Y, Tian Y, Ji Y, et al. Interleukin 10 attenuates angiotensin II-induced aortic remodelling by inhibiting oxidative stress-induced activation of the vascular p38 and NF-κB pathways. Oxid Med Cell Longev. 2022;2022:1–15.

    Google Scholar 

  35. Onyszkiewicz M, Gawrys-Kopczynska M, Konopelski P, Aleksandrowicz M, Sawicka A, Koźniewska E, et al. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflug Arch. 2019;471:1441–53.

    Article  CAS  Google Scholar 

  36. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lednovich K, Priyadarshini M, Kotlo K, Xu K, Priyamvada S, Dudeja P, et al. OR31-3 role of a novel short chain fatty acid receptor OLFR78 in mediating gluco-metabolic hormone secretion. J Endocr Soc. 2019;3:OR31–3.

    Article  PubMed Central  Google Scholar 

  38. Poll BG, Cheema MU, Pluznick JL. Gut microbial metabolites and blood pressure regulation: focus on SCFAs and TMAO. Physiology. 2020;35:275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of micromilieu for pathophysiologic mineralocorticoid receptor activity—when the mineralocorticoid receptor resides in the wrong neighborhood. IJMS. 2022;23:12592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells. 2023;12:793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018;132:701–18.

    Article  CAS  Google Scholar 

  42. Liu K, Li F, Sun Q, Lin N, Han H, You K, et al. p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 2019;10:243.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Han Y, Bedarida T, Ding Y, Somba BK, Lu Q, Wang Q, et al. β-hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of oct4. Mol Cell. 2018;71:1064–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reigstad CS, Salmonson CE, Iii JFR, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells. FASEB J. 2015;29:1395–403.

    Article  CAS  PubMed  Google Scholar 

  45. Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ, et al. Impaired autonomic nervous system-microbiome circuit in hypertension: a premise for hypertension therapy. Circ Res. 2019;125:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Day-Walsh P, Shehata E, Saha S, Savva GM, Nemeckova B, Speranza J, et al. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, l-carnitine and related precursors by the human gut microbiota. Eur J Nutr. 2021;60:3987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiouptsi K, Ruf W, Reinhardt C. Microbiota-derived trimethylamine: the missing jigsaw piece in thrombosis? Circ Res. 2018;123:1112–4.

    Article  CAS  PubMed  Google Scholar 

  48. Rath S, Rud T, Pieper DH, Vital M. Potential TMA-producing bacteria are ubiquitously found in mammalia. Front Microbiol. 2020;10:2966.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Janeiro M, Ramírez M, Milagro F, Martínez J, Solas M. Implication of trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10:1398.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ge X, Zheng L, Zhuang R, Yu P, Xu Z, Liu G, et al. The gut microbial metabolite trimethylamine N-oxide and hypertension risk: a systematic review and dose-response meta-analysis. Adv Nutr. 2020;11:66–76.

    Article  PubMed  Google Scholar 

  51. Nie J, **e L, Zhao B, Li Y, Qiu B, Zhu F, et al. Serum trimethylamine N-Oxide concentration is positively associated with first stroke in hypertensive patients. Stroke. 2018;49:2021–8.

    Article  CAS  PubMed  Google Scholar 

  52. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 2021;13:e1882927.

    Article  Google Scholar 

  53. Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients. 2020;12:2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan M, Guo X, Ji G, Huang R, Huang D, Li Z, et al. Mechanism based role of the intestinal microbiota in gestational diabetes mellitus: a systematic review and meta-analysis. Front Immunol. 2023;13:1097853.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jiang S, Shui Y, Cui Y, Tang C, Wang X, Qiu X, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II–induced hypertension. Redox Biol. 2021;46:102115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids. 2017;49:2083–90.

    Article  CAS  PubMed  Google Scholar 

  57. Rinschen MM, Palygin O, Guijas C, Palermo A, Palacio-Escat N, Domingo-Almenara X, et al. Metabolic rewiring of the hypertensive kidney. Sci Signal. 2019;12:eaax9760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rinschen MM, Palygin O, El-Meanawy A, Domingo-Almenara X, Palermo A, Dissanayake LV, et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun. 2022;13:4099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katsyuba E, Mottis A, Zietak M, De Franco F, van der Velpen V, Gariani K, et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature. 2018;563:354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ralto KM, Rhee EP, Parikh SM. NAD+ homeostasis in renal health and disease. Nat Rev Nephrol. 2020;16:99–111.

    Article  CAS  PubMed  Google Scholar 

  61. Senchukova MA. Microbiota of the gastrointestinal tract: friend or foe? World J Gastroenterol. 2023;29:19–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rashid J, Kumar SS, Job KM, Liu X, Fike CD, Sherwin CMT. Therapeutic potential of citrulline as an arginine supplement: a clinical pharmacology review. Pediatr Drugs. 2020;22:279–93.

    Article  Google Scholar 

  63. Michonneau D, Latis E, Curis E, Dubouchet L, Ramamoorthy S, Ingram B, et al. Metabolomics analysis of human acute graft-versus-host disease reveals changes in host and microbiota-derived metabolites. Nat Commun. 2019;10:5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76:473–93.

    Article  CAS  PubMed  Google Scholar 

  65. Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: an endogenous regulator of the immune system. Pharmacol Res. 2020;161:105119.

    Article  CAS  PubMed  Google Scholar 

  66. Munteanu C. Hydrogen sulfide and oxygen homeostasis in atherosclerosis: a systematic review from molecular biology to therapeutic perspectives. IJMS. 2023;24:8376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Yue T, Gu W, Liu A, Cheng M, Zheng H, et al. pH-responsive hierarchical H2S-releasing nano-disinfectant with deep-penetrating and anti-inflammatory properties for synergistically enhanced eradication of bacterial biofilms and wound infection. J Nanobiotechnol. 2022;20:55.

    Article  Google Scholar 

  68. Spiller F, Orrico MIL, Nascimento DC, Czaikoski PG, Souto FO, Alves-Filho JC, et al. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K + ATP channel activation. Am J Respir Crit Care Med. 2010;182:360–8.

    Article  CAS  PubMed  Google Scholar 

  69. Farahat S, Kherkheulidze S, Nopp S, Kainz A, Borriello M, Perna AF, et al. Effect of hydrogen sulfide on essential functions of polymorphonuclear leukocytes. Toxins. 2023;15:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heikal L, Starr A, Hussein D, Prieto-Lloret J, Aaronson P, Dailey LA, et al. l-phenylalanine restores vascular function in spontaneously hypertensive rats through activation of the GCH1-GFRP complex. JACC: Basic Transl Sci. 2018;3:366–77.

    PubMed  Google Scholar 

  71. Li M, Wu Y, Ye L. The role of amino acids in endothelial biology and function. Cells. 2022;11:1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang P, Zhou L, Chen M, Zeng L, Ouyang Y, Zheng X, et al. Supplementation of amino acids and organic acids prevents the increase in blood pressure induced by high salt in Dahl salt-sensitive rats. Food Funct. 2022;13:891–903.

    Article  CAS  PubMed  Google Scholar 

  73. Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7:75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11:158–71.

    Article  PubMed  Google Scholar 

  75. Jia E, Liu Z, Pan M, Lu J, Ge Q. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B. 2019;20:781–92.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang H, Latorre JD, Bansal M, Abraha M, Al-Rubaye B, Tellez-Isaias G, et al. Microbial metabolite deoxycholic acid controls Clostridium perfringens-induced chicken necrotic enteritis through attenuating inflammatory cyclooxygenase signaling. Sci Rep. 2019;9:14541.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fiorucci S, Carino A, Baldoni M, Santucci L, Costanzi E, Graziosi L, et al. Bile acid signaling in inflammatory bowel diseases. Dig Dis Sci. 2021;66:674–93.

    Article  CAS  PubMed  Google Scholar 

  78. Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol-Heart Circ Physiol. 2022;322:H636–H646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ye X, Shen S, Xu Z, Zhuang Q, Xu J, Wang J, et al. Sodium butyrate alleviates cholesterol gallstones by regulating bile acid metabolism. Eur J Pharmacol. 2021;908:174341.

    Article  CAS  PubMed  Google Scholar 

  80. Guan B, Tong J, Hao H, Yang Z, Chen K, Xu H, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharmaceutica Sin B. 2022;12:2129–49.

    Article  CAS  Google Scholar 

  81. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16:137–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiouptsi K, Reinhardt C. Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis: microbiota and thrombosis. Br J Pharmacol. 2018;175:4439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the intestinal epithelial tight junction barrier. Front Immunol. 2021;12:767456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang C-F, Liu JT, Wang Y, Xu A, Vanhoutte PM. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. ATVB. 2013;33:777–84.

    Article  CAS  Google Scholar 

  85. De Pergola G, D’Alessandro A. Influence of Mediterranean diet on blood pressure. Nutrients. 2018;10:1700.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chiavaroli L, Viguiliouk E, Nishi S, Blanco Mejia S, Rahelić D, Kahleová H, et al. DASH dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients. 2019;11:338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Filippou CD, Thomopoulos CG, Kouremeti MM, Sotiropoulou LI, Nihoyannopoulos PI, Tousoulis DM, et al. Mediterranean diet and blood pressure reduction in adults with and without hypertension: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2021;40:3191–200.

    Article  PubMed  Google Scholar 

  88. Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: active ingredients and pharmacological mechanisms. Br J Pharm. 2020;177:1241–57.

    Article  CAS  Google Scholar 

  89. Koelman L, Egea Rodrigues C, Aleksandrova K. Effects of dietary patterns on biomarkers of inflammation and immune responses: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2022;13:101–15.

    Article  PubMed  Google Scholar 

  90. Gibiino G, De Siena M, Sbrancia M, Binda C, Sambri V, Gasbarrini A, et al. Dietary habits and gut microbiota in healthy adults: focusing on the right diet. a systematic review. IJMS. 2021;22:6728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jennings A, Berendsen AM, de Groot LCPGM, Feskens EJM, Brzozowska A, Sicinska E, et al. Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults: results of a 1-year European multi-center trial. Hypertension 2019;73:578–86.

    Article  CAS  PubMed  Google Scholar 

  92. Carson TL, Buro AW, Miller D, Peña A, Ard JD, Lampe JW, et al. Rationale and study protocol for a randomized controlled feeding study to determine the structural- and functional-level effects of diet-specific interventions on the gut microbiota of non-Hispanic black and white adults. Contemp Clin Trials. 2022;123:106968.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Diao Z, Molludi J, Latef Fateh H, Moradi S. Comparison of the low-calorie DASH diet and a low-calorie diet on serum TMAO concentrations and gut microbiota composition of adults with overweight/obesity: a randomized control trial. Int J Food Sci Nutr. 2023;75:1–14.

    Google Scholar 

  94. Filippou CD, Tsioufis CP, Thomopoulos CG, Mihas CC, Dimitriadis KS, Sotiropoulou LI, et al. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2020;11:1150–60.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bakhoum CY, Anderson CAM, Juraschek SP, Rebholz CM, Appel LJ, Miller ER, et al. The relationship between urine uromodulin and blood pressure changes: The DASH-sodium trial. Am J Hypertens. 2021;34:154–6.

    Article  CAS  PubMed  Google Scholar 

  96. Pavlidou E, Fasoulas A, Mantzorou M, Giaginis C. Clinical evidence on the potential beneficial effects of probiotics and prebiotics in cardiovascular disease. IJMS. 2022;23:15898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes. 2020;11:1–20.

    Article  PubMed  Google Scholar 

  99. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12:1107.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903.

    Article  CAS  PubMed  Google Scholar 

  101. Robles‐Vera I, Visitación N, Toral M, Sánchez M, Romero M, Gómez‐Guzmán M, et al. Probiotic Bifidobacterium breve prevents DOCA‐salt hypertension. FASEB J. 2020;34:13626–40.

    Article  PubMed  Google Scholar 

  102. Aoki R, Kamikado K, Suda W, Takii H, Mikami Y, Suganuma N, et al. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci Rep. 2017;7:43522.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhao T, Zhang L, Zhou N, Sun D, **e J, Xu S. Long‐term use of probiotics for the management of office and ambulatory blood pressure: A systematic review and meta‐analysis of randomized, controlled trials. Food Sci Nutr. 2022;11:101–13.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Leung C-Y, Weitz JS. Not by (good) microbes alone: towards immunocommensal therapies. Trends Microbiol. 2019;27:294–302.

    Article  CAS  PubMed  Google Scholar 

  105. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16:605–16.

    Article  PubMed  Google Scholar 

  106. Choi MS, Yu JS, Yoo HH, Kim D-H. The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol Res. 2018;130:164–71.

    Article  CAS  PubMed  Google Scholar 

  107. Jaworska K, Kopacz W, Koper M, Szudzik M, Gawryś-Kopczyńska M, Konop M, et al. Enalapril diminishes the diabetes-induced changes in intestinal morphology, intestinal RAS and blood SCFA concentration in rats. IJMS. 2022;23:6060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu H, Lam TYC, Shum T-F, Tsai T-Y, Chiou J. Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertens Res. 2022;45:270–82.

    Article  CAS  PubMed  Google Scholar 

  109. Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, et al. Cancer induces a stress ileopathy depending on β-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 2022;12:1128–51.

    Article  CAS  PubMed  Google Scholar 

  110. Galla S, Chakraborty S, Cheng X, Yeo J, Mell B, Zhang H. et al. Disparate effects of antibiotics on hypertension. Physiol Genom. 2018;50:837–45.

    Article  CAS  Google Scholar 

  111. Dong Y, Xu T, **ao G, Hu Z, Chen J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front Bioeng Biotechnol. 2022;10:909591.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174:1406–23.

    Article  CAS  PubMed  Google Scholar 

  114. Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321:156–64.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang, Mocanu, Cai, Dang, Slater, Deehan, et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome—a systematic review. Nutrients. 2019;11:2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martinez-Gili L, McDonald JAK, Liu Z, Kao D, Allegretti JR, Monaghan TM, et al. Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent Clostridioides difficile infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes. 2020;12:1810531.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Richards EM, Pepine CJ, Raizada MK, Kim S. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19:36.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut microbiota dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40.

    Article  CAS  PubMed  Google Scholar 

  120. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120:312–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Henan Province (222300420089), the National Natural Science Foundation of China (31971065 and 32371170), and the Scientific Research and Innovation Team of the First Affiliated Hospital of Zhengzhou University (QNCXTD2023006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang-Suo Liu or Peng Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, YF., Gao, ZX., Mao, ZH. et al. Perspectives on the involvement of the gut microbiota in salt-sensitive hypertension. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01747-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01747-y

  • Springer Nature Singapore Pte Ltd.

Keywords

Navigation