Log in

Molecular Features, Prognostic Value, and Cancer Immune Interactions of Angiogenesis-Related Genes in Ovarian Cancer

  • Gynecologic Oncology: Original Paper
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Angiogenesis is crucial to tumor growth and metastasis; it plays a key role in various cancers development and progression. However, the potential effects of angiogenesis-related genes (ARGs) in ovarian cancer (OC) remain to be further investigated. We discussed the characteristics changes of ARGs in 784 OC samples from genomic and transcriptional levels, as well as their expression patterns based on four distinct datasets. First, 784 OC patients were divided into three molecular subtypes, and the findings indicated that ARG changes were correlated with clinicopathological parameters, prognosis, and immune cell-infiltrating tumor microenvironment (TME). OC patients were subsequently divided into two gene subtypes depending on differentially expressed genes (DEGs) of the abovementioned molecular subtypes. We also established an ARGs-related score (ARGs score) model for evaluating overall survival (OS) and determining the immunological landscape of OC patients, therefore predicting patients’ prognosis and therapeutic responses. A lower ARGs’ score accompanied by a high mutation frequency implies a higher probability of survival. Furthermore, the ARG score was correlated with the cancer stem cell (CSC) index and chemotherapeutic sensitivity. The significant involvement of ARGs in the tumor-immune-stromal microenvironment, clinicopathological characteristics, and prognosis were established in our systematic investigation of ARGs for OC patients. These discoveries might help us to better understand the role of ARGs in OC, as well as give new insight for predicting the prognosis and providing promising immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Publicly available datasets were analyzed in this study; these can be found in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and UCSC Xena (http://xena.ucsc.edu/). All procedure in this study followed corresponding guidelines and relative policies of above public database. The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Code Availability

The R markdown code used to conduct these analyses.

References

  1. Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 2008;41(4):278–86.

    Article  CAS  PubMed  Google Scholar 

  2. Park JA, Kwon Y-G. Hippo-YAP/TAZ signaling in angiogenesis. BMB Rep. 2018;51(3):157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–8.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2022. CA: a Cancer Journal For Clinicians. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

  5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal For Clinicians. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

  6. Chen Y, Zhang L, Liu W-X, Wang K. Vegf and Sema4d have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer. Cell Mol Biol Lett. 2018;23:2. https://doi.org/10.1186/s11658-017-0058-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim D, Do Y, Kwon BS, Chang W, Lee M-S, Kim J, et al. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep. 2020;53(6):291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurnit KC, Fleming GF, Lengyel E. Updates and new options in advanced epithelial ovarian cancer treatment. Obstet Gynecol. 2021;137(1):108–21. https://doi.org/10.1097/AOG.0000000000004173.

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt J, Matei D. Targeting angiogenesis in ovarian cancer. Cancer Treat Rev. 2012;38(4):272–83. https://doi.org/10.1016/j.ctrv.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  10. Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer. 2018;18(6):359–76. https://doi.org/10.1038/s41568-018-0006-7.

    Article  CAS  PubMed  Google Scholar 

  11. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–40. https://doi.org/10.1038/nrclinonc.2018.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen B, Gao A, Tu B, Wang Y, Yu X, Wang Y, et al. Metabolic modulation via mtor pathway and anti-angiogenesis remodels tumor microenvironment using Pd-L1-targeting codelivery. Biomaterials. 2020;255:120187. https://doi.org/10.1016/j.biomaterials.2020.120187.

    Article  CAS  PubMed  Google Scholar 

  13. Riera-Domingo C, Audigé A, Granja S, Cheng W-C, Ho P-C, Baltazar F, et al. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev. 2020;100(1):1–102. https://doi.org/10.1152/physrev.00018.2019.

    Article  CAS  PubMed  Google Scholar 

  14. Song M, Yeku OO, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived Ubr5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11(1):6298. https://doi.org/10.1038/s41467-020-20140-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, et al. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med. 2021;11(1):e288. https://doi.org/10.1002/ctm2.288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018;15(7):459–66. https://doi.org/10.1038/s41571-018-0004-4.

    Article  CAS  PubMed  Google Scholar 

  17. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172(4):650–65. https://doi.org/10.1016/j.cell.2018.01.029.

    Article  CAS  PubMed  Google Scholar 

  18. Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. Alternative polyadenylation in stem cell self-renewal and differentiation. Trends Mol Med. 2021;27(7):660–72. https://doi.org/10.1016/j.molmed.2021.04.006.

    Article  CAS  PubMed  Google Scholar 

  19. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 2019;24(1):25–40. https://doi.org/10.1016/j.stem.2018.11.017.

    Article  CAS  PubMed  Google Scholar 

  20. Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the warburg effect in refractory ovarian cancer: a promise towards disease remission. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188563. https://doi.org/10.1016/j.bbcan.2021.188563.

    Article  CAS  PubMed  Google Scholar 

  21. Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova I-I. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 2018;53:156–67. https://doi.org/10.1016/j.semcancer.2018.11.006.

    Article  CAS  PubMed  Google Scholar 

  22. Roy L, Cowden Dahl KD. Can Stemness and Chemoresistance Be Therapeutically Targeted Via Signaling Pathways in Ovarian Cancer? Cancers (Basel). 2018;10(8):241. https://doi.org/10.3390/cancers10080241.

  23. Keyvani V, Farshchian M, Esmaeili S-A, Yari H, Moghbeli M, Nezhad S-RK, et al. Ovarian cancer stem cells and targeted therapy. J Ovarian Res. 2019;12(1):120. https://doi.org/10.1186/s13048-019-0588-z.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971;133(2):275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  CAS  PubMed  Google Scholar 

  26. Carmeliet P, Baes M. Metabolism and therapeutic angiogenesis. N Engl J Med. 2008;358(23):2511–2. https://doi.org/10.1056/NEJMcibr0802500.

    Article  CAS  PubMed  Google Scholar 

  27. Lorusso D, Ceni V, Daniele G, Salutari V, Pietragalla A, Muratore M, et al. Newly diagnosed ovarian cancer: which first-line treatment? Cancer Treat Rev. 2020;91:102111. https://doi.org/10.1016/j.ctrv.2020.102111.

    Article  CAS  PubMed  Google Scholar 

  28. Armstrong DK, Alvarez RD, Bakkum-Gamez JN, Barroilhet L, Behbakht K, Berchuck A, et al. Ovarian Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021;19(2):191–226. https://doi.org/10.6004/jnccn.2021.0007.

  29. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang Y, Wang C, Zhou S. Targeting tumor microenvironment in ovarian cancer: premise and promise. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188361. https://doi.org/10.1016/j.bbcan.2020.188361.

    Article  CAS  PubMed  Google Scholar 

  32. Franklin RA, Li MO. Ontogeny of tumor-associated macrophages and its implication in cancer regulation. Trends Cancer. 2016;2(1):20–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61. https://doi.org/10.1038/nri3088.

    Article  CAS  PubMed  Google Scholar 

  35. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88. https://doi.org/10.1016/j.immuni.2014.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49. https://doi.org/10.1146/annurev-pathol-042020-042741.

    Article  CAS  PubMed  Google Scholar 

  37. Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17(12):725–41. https://doi.org/10.1038/s41571-020-0413-z.

    Article  PubMed  Google Scholar 

  38. Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, et al. Enhanced efficacy of simultaneous Pd-1 and Pd-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 2021;81(1):158–73. https://doi.org/10.1158/0008-5472.CAN-20-1674.

    Article  CAS  PubMed  Google Scholar 

  39. Indini A, Nigro O, Lengyel CG, Ghidini M, Petrillo A, Lopez S, et al. Immune-Checkpoint Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel). 2021;13(7):1663. https://doi.org/10.3390/cancers13071663.

  40. Lee EK, Konstantinopoulos PA. Combined parp and immune checkpoint inhibition in ovarian cancer. Trends Cancer. 2019;5(9):524–8. https://doi.org/10.1016/j.trecan.2019.06.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the R package developers and the maintainers of The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO).

Funding

This work was supported by the National Natural Science Foundation of China (No. 81802605), Gynecological tumor special research Fund of Bei**g Kanghua Traditional Chinese and Western Medicine Development Foundation (No. KH-2021-LLZX-044), Tian** Key Medical Discipline (Specialty) Construction Project, and Natural Science Foundation of Tian** municipality (No. 21JCQNJC00230).

Author information

Authors and Affiliations

Authors

Contributions

Yurou Ji and Qi Ge contributed to the conception, data collection and analysis of the study. All authors drafted the manuscript. Wenwen Zhang and Pengpeng Qu revised the manuscript for important intellectual content. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Wenwen Zhang or Pengpeng Qu.

Ethics declarations

Ethics Approval

All data in this article comes from the public databases including the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and UCSC Xena (http://xena.ucsc.edu/) and does not involve animal or human subjects in any way, so the IRB Approval is not available.

Consent to Participate

Not applicable.

Consent for Publication

All the authors read and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Ge, Q., Zhang, W. et al. Molecular Features, Prognostic Value, and Cancer Immune Interactions of Angiogenesis-Related Genes in Ovarian Cancer. Reprod. Sci. 30, 1637–1650 (2023). https://doi.org/10.1007/s43032-022-01123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01123-6

Keywords

Navigation