Log in

Modified screen-printed electrochemical biosensor design compatible with mobile phones for detection of miR-141 used to pancreatic cancer biomarker

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are emerging materials as ideal biomarkers for noninvasive cancer detection in the early phase. In this article, a simple and label-free electrochemical miRNA biosensor was developed. A single-stranded DNA (ss-DNA) probes were successfully mapped to f-MWCNT and hybridized with the target miR-141 sequence. The optimum peak points of the obtained hybridization were determined using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) methods. Significant peaks were observed in the results, depending on miR-141 at different concentrations. The linear relationship (ν) between redox peak currents (Ip) and scanning rate indicated that electron transfer (ET) between miR-141 and the electrode surface was accomplished successfully. In DPV measurements, miR-141 was measured with a low detection limit (LOD) in the 1.3–12 nM concentration range, and the LOD and limit of quantification (LOQ) results were found to be 3 and 9.1 pM, respectively. Besides, selectivity test was investigated for the biosensor using different target analytes and a significant difference in value was observed between the peak currents of miR-141, and other target molecules. This developed strategy has been found to detect miR-141 sensitively, selectively and without tags, and its integration into mobile devices has been successfully carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data obtained during the present study are available from the corresponding author on request.

References

  1. Valsami-Jones E, Lynch I (2015) How safe are nanomaterials? Science 80:388–389

    Article  Google Scholar 

  2. Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2(6):1821–1871

    Article  Google Scholar 

  3. Zhang Z, Karimi-Maleh H (2023) In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324:138302

  4. Zhang ZX, Karimi-Maleh H (2023) Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv Compos Hybrid Mater 6(68)

  5. Karimi-Maleh H et al (2023) State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ Res 222:115338

  6. Karimi-Maleh H et al (2022) Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem Toxicol 162:112907

    Article  CAS  Google Scholar 

  7. Mehmandoust M et al (2021) Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine. Food Chem Toxicol 158:112698

    Article  CAS  Google Scholar 

  8. Karimi-Maleh H et al (2023) Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; a bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332:138815

    Article  CAS  Google Scholar 

  9. Ameen F et al (2023) A novel atropine electrochemical sensor based on silver nano particle-coated Spirulina platensis multicellular blue-green microalga. Chemosphere 324:138180

  10. Dabirifar Z et al (2022) Design of Co-Sn bimetallic nanoalloys as electrocatalyst for alkaline methanol oxidation reaction: Exploring the effect of electroactivation process. Fuel 319:123727

    Article  CAS  Google Scholar 

  11. Karimi F et al (2022) Polyaniline-manganese ferrite supported platinum-ruthenium nanohybrid electrocatalyst: synergizing tailoring toward boosted ethanol oxidation reaction. Top Catal 65(5–6):716–725

    Article  CAS  Google Scholar 

  12. Karimi-Maleh H et al (2022) Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. J Nanostruct Chem 12(3):429–439

    Article  CAS  Google Scholar 

  13. Jafarzadeh H et al (2022) Hydrogen production via sodium borohydride hydrolysis catalyzed by cobalt ferrite anchored nitrogen-and sulfur co-doped graphene hybrid nanocatalyst: artificial neural network modeling approach. Chem Eng Res Des 183:557–566

    Article  CAS  Google Scholar 

  14. Karaman O (2022) Three-dimensional graphene network supported nickel-cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and develo** of an artificial neural network modeling to forecast hydrogen production rate. Chem Eng Res Des 181:321–330

    Article  CAS  Google Scholar 

  15. Karaman C et al (2022) Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 290:133346

    Article  CAS  Google Scholar 

  16. Aboli E, Jafari D, Esmaeili H (2020) Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Lett 30(6):683–698

    Article  Google Scholar 

  17. Bae J, Hong JY (2021) Fabrication of nitrogen-doped porous carbon nanofibers for heavy metal ions removal. Carbon Lett 31(6):1339–1347

    Article  Google Scholar 

  18. Mubarak MF et al (2022) Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies. Alex Eng J 61(6):4189–4207

    Article  Google Scholar 

  19. **a C et al (2023) Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: a promising positive electrode material for high-energy-density asymmetric supercapacitors. Energy 270:126914

    Article  CAS  Google Scholar 

  20. Goei R et al (2022) Development of nitrogen-decorated carbon dots (NCDs) thermally conductive film for windows application. Carbon Lett 32(4):1065–1072

    Article  Google Scholar 

  21. Hosseinzadeh K et al (2021) Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2–TiO2) on solidification process in triplex latent heat thermal energy storage system. Alex Eng J 60(1):1967–1979

    Article  Google Scholar 

  22. Kandathil V et al (2021) A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. J Nanostruct Chem 11(3):395–407

    Article  CAS  Google Scholar 

  23. Magne TM et al (2022) Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J Nanostruct Chem 12(5):693–727

    Article  CAS  Google Scholar 

  24. Ameen F et al (2022) Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl Nanosci 13(3)

  25. Moghadam NCZ et al (2022) Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst Eng 45(7):1201–1210

    Article  CAS  Google Scholar 

  26. Megarajan S et al (2022) Synthesis of N-myristoyltaurine stabilized gold and silver nanoparticles: assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish. Environ Res 212(Pt A):113159

  27. Ayranci R et al (2017) Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect 2(4):1548–1555

    Article  CAS  Google Scholar 

  28. Sen B et al (2021) Bimetallic palladium-cobalt nanomaterials as highly efficient catalysts for dehydrocoupling of dimethylamine borane (vol 45, pg 3569, 2020). Int J Hydrogen Energy 46(39):20797–20798

    Article  CAS  Google Scholar 

  29. Aygun A et al (2022) Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation. Int J Hydrogen Energy 6666–6679

  30. Goksu H et al (2021) Bimetallic nanomaterials for direct alcohol fuel cells. Nanomaterials for direct alcohol fuel cells. Elsevier, pp 145–156

    Chapter  Google Scholar 

  31. Akin M et al (2021) Carbon-based nanomaterials for alcohol fuel cells. Nanomaterials for direct alcohol fuel cells. Elsevier, pp 319–336

    Chapter  Google Scholar 

  32. Babudurai M et al (2021) Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of ball-to-powder ratio and milling time. J Nanostruct Chem 11(4):633–633

    Article  Google Scholar 

  33. Ameen F, Dawoud T, AlNadhari S (2021) Ecofriendly and low-cost synthesis of ZnO nanoparticles from Acremonium potronii for the photocatalytic degradation of azo dyes. Environ Res 202:111700

  34. Erduran V et al (2022) Functionalized carbon material-based electrochemical sensors for day-to-day applications. Functionalized nanomaterial-based electrochemical sensors. Woodhead Publishing, pp 97–111

    Chapter  Google Scholar 

  35. Akocak S et al (2017) One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct Nano-Objects 11:25–31

    Article  CAS  Google Scholar 

  36. Ehtesabi H (2020) Carbon nanomaterials for salivary-based biosensors: a review. Mater Today Chem 17:100342

  37. Kadam PM et al (2011) Enhanced electrochromic performance of f-MWCNT-WO3 composite. Electrochim Acta 58:556–561

    Article  CAS  Google Scholar 

  38. Yang C et al (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta 887:17–37

    Article  CAS  Google Scholar 

  39. Irfan M et al (2014) Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J Membr Sci 467:73–84

    Article  CAS  Google Scholar 

  40. Ermis N et al (2023) Recent advantage in electrochemical monitoring of gallic acid and kojic acid: a new perspective in food science. J Food Measure Charact 2023

  41. Karthik R et al (2017) A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample. J Colloid Interface Sci 487:289–296

    Article  CAS  Google Scholar 

  42. Hwa KY, Sharma TSK (2020) Nano assembly of NiFe spheres anchored on f-MWCNT for electrocatalytic reduction and sensing of nitrofurantoin in biological samples. Sci Rep 10(1):12256

  43. Baghayeri M et al (2014) Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv 4(91):49595–49604

    Article  CAS  Google Scholar 

  44. Haleem A et al (2021) Biosensors applications in medical field: a brief review. Sensors Int 2:100100

    Article  Google Scholar 

  45. Falkowski P, Lukaszewski Z, Gorodkiewicz E (2021) Potential of surface plasmon resonance biosensors in cancer detection. J Pharm Biomed Anal 194:113802

  46. Kaya SI et al (2020) Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug Idarubicin. Sci Rep 10(1):11057

  47. Bekmezci M et al (2022) Biofunctionalization of functionalized nanomaterials for electrochemical sensors. Functionalized nanomaterial-based electrochemical sensors. Woodhead Publishing, pp 55–69

    Chapter  Google Scholar 

  48. Sadeghi H et al (2022) Electrochemical determination of vitamin B6 in water and juice samples using an electrochemical sensor amplified with NiO/CNTs and Ionic liquid. Int J Electrochem Sci 15:10488–10498

    Article  Google Scholar 

  49. Tabrizi M et al (2022) Reduce graphene oxide/Fe3O4 nanocomposite biosynthesized by sour lemon peel; using as electro-catalyst for fabrication of vanillin electrochemical sensor in food products analysis and anticancer activity. Top Catal 65(5–6):726–732

    Article  CAS  Google Scholar 

  50. Arjmandi J et al (2022) Sudan I monitoring as a hazardous azo dye using an electroanalytical tool amplified with NiO/SWCNTs-ionic liquid catalysts. Chemosphere 309(Pt 1):136673

  51. Vatandost E et al (2020) Antioxidant, antibacterial and anticancer performance of reduced graphene oxide prepared via green tea extract assisted biosynthesis. ChemistrySelect 5(33):10401–10406

    Article  CAS  Google Scholar 

  52. Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  Google Scholar 

  53. Savk A et al (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater Sci Eng C-Mater Biol Appl 99:248–254

    Article  CAS  Google Scholar 

  54. Arikan K et al (2022) Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel-cobalt nanocomposites on f-MWCNT. Chemosphere 291(Pt 3):132720

  55. Dalla Pozza M et al (2017) Magneto-elastic biosensors: Influence of different thiols on pathogen capture efficiency. Mater Sci Eng C-Mater Biol Appl 75:629–636

    Article  CAS  Google Scholar 

  56. Zhang KY et al (2021) Machine learning-reinforced noninvasive biosensors for healthcare. Adv Healthcare Mater 10(17):e2100734

  57. Tüylek Z (2017) Biyosensörler ve Nanoteknolojik Etkileşim. BEU J Sci 6:71–80

    Google Scholar 

  58. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  Google Scholar 

  59. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  Google Scholar 

  60. Liu B et al (2016) iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J Biomol Struct Dyn 34(1):223–235

    Article  CAS  Google Scholar 

  61. **ao RL, Li C, Chai BF (2015) miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother 74:138–144

    Article  CAS  Google Scholar 

  62. Wei LS et al (2018) Clinical utilization of serum-or plasma-based miRNAs as early detection biomarkers for pancreatic cancer: a meta-analysis up to now. Medicine 97(35):e12132

  63. Baradaran B, Shahbazi R, Khordadmehr M (2019) Dysregulation of key microRNAs in pancreatic cancer development. Biomed Pharmacother 109:1008–1015

    Article  CAS  Google Scholar 

  64. He BX et al (2020) miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci 16(14):2628–2647

    Article  CAS  Google Scholar 

  65. Luo QQ et al (2022) Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 95:110354

  66. Zhao G et al (2013) miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther 12(11):2569–2580

    Article  CAS  Google Scholar 

  67. Ma LX et al (2019) The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell Int 19:248

  68. Pothipor C et al (2021) A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. Analyst 146(8):2679–2688

    Article  CAS  Google Scholar 

  69. Rafiee-Pour HA, Behpour M, Keshavarz M (2016) A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 77:202–207

    Article  CAS  Google Scholar 

  70. Kilic T et al (2015) Electrochemical detection of a cancer biomarker mir-21 in cell lysates using graphene modified sensors. Electroanalysis 27(2):317–326

    Article  CAS  Google Scholar 

  71. Kaplan M et al (2017) A novel method for sensitive microRNA detection: electropolymerization based do**. Biosens Bioelectron 92:770–778

    Article  CAS  Google Scholar 

  72. Hong CY et al (2013) Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron 50:132–136

    Article  CAS  Google Scholar 

  73. Yang LL et al (2021) Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Microchimica Acta 188(1):2

  74. Kunovsky L et al (2018) The use of biomarkers in early diagnostics of pancreatic cancer. Can J Gastroenterol Hepatol 2018:5389820

  75. Wong W et al (2020) BRCA mutations in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manage Res 12:2731–2742

    Article  CAS  Google Scholar 

  76. Hong SM et al (2020) Three-dimensional visualization of cleared human pancreas cancer reveals that sustained epithelial-to-mesenchymal transition is not required for venous invasion. Mod Pathol 33(4):639–647

    Article  CAS  Google Scholar 

  77. Na’ara S, Amit M, Gil Z (2019) L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression. Oncogene 38(4):596–608

    Article  CAS  Google Scholar 

  78. Ji D et al (2020) Smartphone-based square wave voltammetry system with screen-printed graphene electrodes for norepinephrine detection. Smart Mater Med 1:1–9

    Article  Google Scholar 

  79. Hasan S et al (2019) Advances in pancreatic cancer biomarkers. Oncol Rev 13(1):69–76

    Article  CAS  Google Scholar 

  80. Gayral M et al (2014) MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World J Gastroenterol 20(32):11199–11209

    Article  Google Scholar 

  81. Jelski W, Mroczko B (2019) Biochemical diagnostics of pancreatic cancer—present and future. Clin Chim Acta 498:47–51

    Article  CAS  Google Scholar 

  82. Zhu HY et al (2018) Pancreatic cancer: challenges and opportunities. BMC Med 16(1):214

  83. Wu WR et al (2018) Rising trends in pancreatic cancer incidence and mortality in 2000–2014. Clin Epidemiol 10:789–797

    Article  Google Scholar 

  84. Nehlsen AD, Goodman KA (2021) Controversies in radiotherapy for pancreas cancer. J Surg Oncol 123(6):1460–1466

    Article  CAS  Google Scholar 

  85. Yamanaka K, Vestergaard MC, Tamiya E (2016) Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors 16(10):1761

  86. Malvano F et al (2016) Impedimetric label-free immunosensor on disposable modified screen-printed electrodes for ochratoxin A. Biosensors-Basel 6(3):33

  87. Smart A et al (2020) Screen -printed carbon based biosensors and their applications in agri-food safety. Trac-Trends Anal Chem 127:115898

  88. Hughes G et al (2016) Recent advances in the fabrication and application of screen-printed electrochemical (Bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors-Basel 6(4):50

  89. Jewell E, Philip B, Greenwood P (2016) Improved manufacturing performance of screen printed carbon electrodes through material formulation. Biosensors-Basel 6(3):30

  90. Sotiropoulou S et al (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18(2–3):211–215

    Article  CAS  Google Scholar 

  91. Xu D et al (2020) Lost miR-141 and upregulated TM4SF1 expressions associate with poor prognosis of pancreatic cancer: regulation of EMT and angiogenesis by miR-141 and TM4SF1 via AKT. Cancer Biol Ther 21(4):354–363

    Article  Google Scholar 

  92. Sun JM, Zhang YB (2019) LncRNA XIST enhanced TGF-beta 2 expression by targeting miR-141–3p to promote pancreatic cancer cells invasion. Biosci Rep 39(7):BSR20190332

  93. Bartel DP (2007) MicroRNAs: genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281–297, 2004). Cell 131(4):11–29

    Google Scholar 

  94. Karimi S et al (2012) A nanocomposite based biosensor for cholesterol determination. Anal Methods 4(10):3225–3231

    Article  CAS  Google Scholar 

  95. Zaine IS et al (2014) Study on dispersion and characterization of functionalized mwcnts prepared by wet oxidation. In: Applied mechanics and materials. Trans Tech Publications Ltd, pp 8–13

  96. Dhall S, Vaidya G, Jaggi N (2014) Joining of broken multiwalled carbon nanotubes using an electron beam-induced deposition (EBID) technique. J Electron Mater 43(9):3283–3289

    Article  CAS  Google Scholar 

  97. Ulus R et al (2016) Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1(13):3861–3865

    Article  CAS  Google Scholar 

  98. Rojas JV et al (2016) Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes. Mater Sci Eng B-Adv Funct Solid-State Mater 205:28–35

    Article  CAS  Google Scholar 

  99. Khodadoust A et al (2022) A ratiometric electrochemical DNA-biosensor for detection of miR-141. Microchimica Acta 189(6):213

  100. Tran HV et al (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  CAS  Google Scholar 

  101. Wang LL et al (2018) Nitrogen-doped hollow carbon nanospheres for high-energy-density biofuel cells and self-powered sensing of microRNA-21 and microRNA-141. Nano Energy 44:95–102

    Article  Google Scholar 

  102. Tian R, Li YJ, Bai JW (2019) Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical detection of microRNAs. Anal Chim Acta 1058:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) TEYDEB 1507 Grant No 7191026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekmezci, M., Bayat, R., Akin, M. et al. Modified screen-printed electrochemical biosensor design compatible with mobile phones for detection of miR-141 used to pancreatic cancer biomarker. Carbon Lett. 33, 1863–1873 (2023). https://doi.org/10.1007/s42823-023-00545-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00545-9

Keywords

Navigation