Log in

Diagnosis of Pancreatic Cancer Using miRNA30e Biosensor

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

This work describes miRNA-based electrochemical biosensor for detection of miRNA30e, a pancreatic cancer biomarker. The screen-printed gold electrode was functionalized using cysteine hydrochloride followed by immobilization of synthesized colloidal gold nanorods (10–12 nm diameter and 25–65 nm length). The gold nanorods modified electrode surface was amino functionalized for covalent attachment of single-stranded DNA probe against miRNA30e (miR30e). This platform was utilized for electrochemical measurements and response analysis of target miRNA30e. Electrochemical impedance spectroscopic measurements showed very poor sensitivity (13.51 Ω/µg/mL/cm2) using charge transfer resistance calibration plots. Cyclic voltammetry and differential pulse voltammetry-based miR30e quantification showed decreasing current response with increasing concentration of miR30e with detection range of 0.1 fg/mL–0.1 µg/mL (14.9 aM–14.9 nM). The sensitivity of DPV sensing (104.4 µA/µg/mL/cm2) was found to be 1.3 times higher than that of CV-based quantification (79.6 µA/µg/mL/cm2). miRNA-based biosensors have the potential of replacing current invasive, time consuming and technically difficult diagnostic procedures. Furthermore, the lower limit of detection of 14.9 aM miRNA30e makes it a promising tool for detection of cancer at early stages and hence increasing survival rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gaidhani RH, Balasubramaniam G (2021) An epidemiological review of pancreatic cancer with special reference to India. Indian J Med Sci 73(1):99–109. https://doi.org/10.25259/IJMS_92_2020

    Article  Google Scholar 

  2. Rickes S, Unkrodt K, Neye H, Ocran KW, Wermke W (2002) Differentiation of pancreatic tumours by conventional ultrasound, unenhanced and echo-enhanced power Doppler sonography. Scand J Gastroenterol 37(11):1313–1320. https://doi.org/10.1080/003655202761020605

    Article  CAS  PubMed  Google Scholar 

  3. Palazzo L, Roseau G, Gayet B, Vilgrain V, Belghiti J, Fékéte F, Paolaggi JA (1993) Endoscopic ultrasonography in the diagnosis and staging of pancreatic adenocarcinoma. Results of a prospective study with comparison to ultrasonography and CT scan. Endoscopy 25(2):143–150. https://doi.org/10.1055/s-2007-1010273

    Article  CAS  PubMed  Google Scholar 

  4. Sendler A, Avril N, Helmberger H, Stollfuss J, Weber W, Bengel F, Schwaiger M, Roder JD, Siewert JR (2000) Preoperative evaluation of pancreatic masses with positron emission tomography using 18F-fluorodeoxyglucose: diagnostic limitations. World J Surg 24(9):1121–1129. https://doi.org/10.1007/s002680010182

    Article  CAS  PubMed  Google Scholar 

  5. Hamada S, Shimosegawa T (2011) Biomarkers of pancreatic cancer. Pancreatology 11(suppl 2):14–19. https://doi.org/10.1159/000323479

    Article  CAS  PubMed  Google Scholar 

  6. Simeone DM, Ji B, Banerjee M, Arumugam T, Li D, Anderson MA, Bamberger AM, Greenson J, Brand RE, Ramachandran V, Logsdon CD (2007) CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 34(4):436–443. https://doi.org/10.1097/mpa.0b013e3180333ae3

    Article  CAS  PubMed  Google Scholar 

  7. Kunovsky L, Tesarikova P, Kala Z, Kroupa R, Kysela P, Dolina J, Trna J (2018) The use of biomarkers in early diagnostics of pancreatic cancer. Can J Gastroenterol Hepatol. https://doi.org/10.1155/2018/5389820

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tempero MA, Malafa MP, Al-Hawary M et al (2017) Pancreatic adenocarcinoma, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15(8):1028–1061. https://doi.org/10.6004/jnccn.2017.0131

    Article  PubMed  Google Scholar 

  9. Bunduc S, Gede N, Váncsa S, Lillik V, Kiss S, Dembrovszky F, Eróss B, Szakács Z, Gheorghe C, Mikó A, Hegyi P (2022) Prognostic role of cell-free DNA biomarkers in pancreatic adenocarcinoma: a systematic review and meta–analysis. Crit Rev Oncol Hematol 169:103548. https://doi.org/10.1016/j.critrevonc.2021.103548

    Article  PubMed  Google Scholar 

  10. Brancaccio M, Natale F, Falco G, Angrisano T (2019) Cell-free DNA methylation: the new frontiers of pancreatic cancer biomarkers’. Discov Genes 11(1):14. https://doi.org/10.3390/genes11010014

    Article  CAS  Google Scholar 

  11. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  12. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. https://doi.org/10.1038/35002607

    Article  CAS  PubMed  Google Scholar 

  13. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. https://doi.org/10.1038/35040556

    Article  CAS  PubMed  Google Scholar 

  14. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. https://doi.org/10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  15. Trang P, Weidhaas JB, Slack FJ (2008) MicroRNAs as potential cancer therapeutics. Oncogene 27(Suppl 2):S52-57. https://doi.org/10.1038/onc.2009.353

    Article  CAS  PubMed  Google Scholar 

  16. Slater PE, Strauch K, Rospleszcz S, Ramaswamy A, Esposito I, Klöppel G, Matthäi E, Heeger K, Fendrich V, Langer P, Bartsch DK (2014) MicroRNA-196a and -196b as potential biomarkers for the early detection of familial pancreatic cancer. Translational Oncology 7(4):464–471. https://doi.org/10.1016/j.tranon.2014.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ishige F, Hoshino I, Iwatate Y et al (2020) MIR1246 in body fluids as a biomarker for pancreatic cancer. Sci Rep 10(1):1–7. https://doi.org/10.1038/s41598-020-65695-6

    Article  CAS  Google Scholar 

  18. Yu Y, Tong Y, Zhong A, Wang Y, Lu R, Guo L (2020) Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer. Medicine 99(52):e23863. https://doi.org/10.1097/MD.0000000000023863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Zhao CY, Zhang SH, Yu DH, Chen Y, Liu QH, Shi M, Ni CR, Zhu MH (2014) Upregulation of miR194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol Rep 31(3):1157–1164. https://doi.org/10.3892/or.2013.2960

    Article  CAS  PubMed  Google Scholar 

  20. Zhao C, Zhang J, Zhang S, Yu D, Chen Y, Liu Q, Shi M, Ni C, Zhu M (2013) Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep 30(1):276–284. https://doi.org/10.3892/or.2013.2420

    Article  CAS  PubMed  Google Scholar 

  21. Panarelli NC, Chen YT, Zhou XK, Kitabayashi N, Yantiss RK (2012) MicroRNA expression aids the preoperative diagnosis of pancreatic ductal adenocarcinoma. Pancreas 41(5):685–690. https://doi.org/10.1097/MPA.0b013e318243a905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li F, Xu JW, Wang L, Liu H, Yan Y, Hu SY (2017) MicroRNA-221-3p is up-regulated and serves as a potential biomarker in pancreatic cancer. Artif Cells Nanomed Biotechnol 46(3):482–487. https://doi.org/10.1080/21691401.2017.1315429

    Article  CAS  PubMed  Google Scholar 

  23. Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, Konishi H, Shiozaki A, Ikoma H, Okamoto K, Ochiai T, Taniguchi H, Otsuji E (2011) Novel diagnostic value of circulating miR18a in plasma of patients with pancreatic cancer. Br J Cancer 105(11):1733–1740. https://doi.org/10.1038/bjc.2011.453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH, Goggins M (2013) MicroRNA array analysis finds elevated serum miR 1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res 19(13):3600–3610. https://doi.org/10.1158/1078-0432.CCR-12-3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hussein NA, Kholy ZA, Anwar MM, Ahmad MA, Ahmad, (2017) Plasma miR-22-3p, miR-642b-3p and miR-885-5p as diagnostic biomarkers for pancreatic cancer. J Cancer Res Clin Oncol 143(1):83–93. https://doi.org/10.1007/s00432-016-2248-7

    Article  CAS  PubMed  Google Scholar 

  26. Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, Borges M, Goggins M (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR200a/200b in association with elevated circulating miR200a and miR200b levels. Cancer Res 70(13):5226–5237. https://doi.org/10.1158/0008-5472.CAN-09-4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan IA, Rashid S, Singh N, Rashid S, Singh V, Gunjan D, Das P, Dash NR, Pandey RM, Chauhan SS, Gupta S, Saraya A (2021) Panel of serum miRNAs as potential non-invasive biomarkers for pancreatic ductal adenocarcinoma. Sci Rep 11(1):1–10. https://doi.org/10.1038/s41598-021-82266-5

    Article  CAS  Google Scholar 

  28. Cote GA, Gore AJ, McElyea SD, Heathers LE, Xu H, Sherman S, Korc M (2014) A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am J Gastroenterol 109(12):1942–1952. https://doi.org/10.1038/ajg.2014.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shao H, Zhang Y, Yan J, Ban X, Fan X, Chang X, Lu Z, Wu Y, Zong L, Mo S, Yu S, Chen J (2021) Upregulated microRNA-483-3p is an early event in pancreatic ductal adenocarcinoma (PDAC) and as a powerful liquid biopsy biomarker in PDAC. Onco Targets Ther 14:2163–2175. https://doi.org/10.2147/OTT.S288936

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu J, Cao Z, Liu W, You L, Zhou L, Wang C, Lou W, Sun B, Miao Y, Liu X, Zhang T, Zhao Y (2016) Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls. Ann Surg 263(6):1173–1179. https://doi.org/10.1097/SLA.0000000000001345

    Article  PubMed  Google Scholar 

  31. Debernardi S, Massat NJ, Radon TP, Sangaralingam A, Banissi A, Ennis DP, Dowe T, Chelala C, Pereira SP, Kocher HM, Young BD, Bond-Smith G, Hutchins R, Crnogorac-Jurcevic T (2015) Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. Am J Cancer Res 5(11):3455–3466 (PMID: 26807325)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. **a N, Zhang L (2014) Nanomaterials-based sensing strategies for electrochemical detection of microRNAs. Materials (Basel) 7(7):5366–5384. https://doi.org/10.3390/ma7075366

    Article  CAS  Google Scholar 

  33. Yammouri G, Mohammadi H, Amine A (2019) A highly sensitive electrochemical biosensor based on carbon black and gold nanoparticles modified pencil graphite electrode for microRNA-21 detection. Chem Afr 2:291–300. https://doi.org/10.1007/s42250-019-00058-x

    Article  CAS  Google Scholar 

  34. Chen SC, Chen KT, Fang-Ju Jou A (2021) Polydopamine-gold composite based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens Bioelectron 173:112815. https://doi.org/10.1016/j.bios.2020.112815

    Article  CAS  PubMed  Google Scholar 

  35. Guo J, Yuan C, Yan Q, Duan Q, Li X, Yi G (2018) An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue. Biosens Bioelectron 105:103–108. https://doi.org/10.1016/j.bios.2018.01.036

    Article  CAS  PubMed  Google Scholar 

  36. Zeng D, Wang Z, Meng Z, Wang P, San L, Wang W, Aldalbahi A, Li L, Shen J, Mi X (2017) DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl Mater Interfaces 9(28):24118–24125. https://doi.org/10.1021/acsami.7b05981

    Article  CAS  PubMed  Google Scholar 

  37. Mao L, Liu S, Hu L (2018) miR30 family: a promising regulator in development and disease. Biomed Res Int. https://doi.org/10.1155/2018/9623412

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Mm, Li Z, Han Xd et al (2017) MiR30e inhibits tumor growth and chemoresistance via targeting IRS1 in Breast Cancer. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-16175-x

    Article  CAS  Google Scholar 

  39. Wang Z, Zhang J, Zhang S, Yan S, Wang Z, Wang C, Zhang X (2019) MiR30e and miR92a are related to atherosclerosis by targeting ABCA1. Mol Med Rep 19(4):3298–3304. https://doi.org/10.3892/mmr.2019.9983

    Article  CAS  PubMed  Google Scholar 

  40. Hu W, Yao W, Li H, Chen L (2020) MiR30e-5p inhibits the migration and invasion of nasopharyngeal carcinoma via regulating the expression of MTA1. Biosci Rep. https://doi.org/10.1042/BSR20194309

  41. Bhattacharya S, Steele R, Shrivastava S (2015) Serum miR30e and miR223 as novel noninvasive biomarkers for hepatocellular carcinoma. Am J Pathol 186(2):242–247. https://doi.org/10.1016/j.ajpath.2015.10.003

    Article  CAS  Google Scholar 

  42. Dieter C, Assmann TS, Costa AR, Canani LH, de Souza BM, Bauer AC, Crispim D (2019) MiR30e-5p and MiR15a-5p expressions in plasma and urine of type 1 diabetic patients with diabetic kidney disease. Front Genet. https://doi.org/10.3389/fgene.2019.00563

    Article  PubMed  PubMed Central  Google Scholar 

  43. Leva-Bueno J, Peyman SA, Millner PA (2020) A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 209(3):343–362. https://doi.org/10.1007/s00430-020-00668-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramos MDM, Correia MGH (2011) Electric field induced charge transfer through single- and double-stranded DNA polymer molecules. Soft Matter 7:10091–10099. https://doi.org/10.1039/C1SM05641G

    Article  CAS  Google Scholar 

  45. Asadzadeh-Firouzabadi A, Zare HR (2017) Application of cysteamine-capped gold nanoparticles for early detection of lung cancer-specific miRNA (miR25) in human blood plasma. Anal Methods 9(25):3852–3861. https://doi.org/10.1039/C7AY01098B

    Article  CAS  Google Scholar 

  46. Zhuravel R, Huang H, Polycarpou G, Polydorides S, Motamarri P, Katrivas L, Rotem D, Sperling J, Zotti LA, Kotlyar AB, Cuevas JC, Gavini V, Skourtis SS, Porath D (2020) Backbone charge transport in double-stranded DNA. Nat Nanotechnol 15:836–840. https://doi.org/10.1038/s41565-020-0741-2

    Article  CAS  PubMed  Google Scholar 

  47. Chandra S, Adeloju S (2020) A new sensor for detecting microrna 133b (Parkinson’s disease biomarker). Sens Int 1:100005. https://doi.org/10.1016/j.sintl.2020.100005

    Article  Google Scholar 

  48. Zouari M, Campuzano S, **arronN RN (2018) Amperometric biosensing of miRNA21 in serum and cancer cells at nanostructured platforms using Anti-DNA−RNA hybrid antibodies. ACS Omega 3:8923–8931. https://doi.org/10.1021/acsomega.8b00986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Daneshpour M, Omidfar K, Ghanbarian H (2016) A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA106a. Beilstein J Nanotechnol 7:2023–2036. https://doi.org/10.3762/bjnano.7.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Namita is thankful to Jaypee Institute of Information Technology Noida, India for providing research fellowship and other research facilities for completion of this project. The authors are also thankful to advanced instrumentation and research facility (AIRF), Jawaharlal Nehru University for extending the facility for transmission electron microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Srivastava.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Srivastava, S. Diagnosis of Pancreatic Cancer Using miRNA30e Biosensor. Interdiscip Sci Comput Life Sci 14, 804–813 (2022). https://doi.org/10.1007/s12539-022-00531-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00531-1

Keywords

Navigation