Log in

Amplified fragment length polymorphism analysis to assess genetic diversity in rice

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Amplified Fragment Length polymorphism (AFLP) was studied involving 48 diverse rice genotypes, comprising of indica, japonica, and Tongil type (indica × japonica) varieties to assess the genetic diversity. Initially 64 primer pair combinations were screened of which 5 were found to be suitable producing clear fragments (35–500 bp). In total 700 amplicons (bands) were produced with an average of 140 bands per primer pair. Maximum (207) from EcoRI AC*/MseI-CAC and minimum (75) amplicons from EcoRI TG*/MseI-CTT primer pairs were observed. Minimum (0.973) and maximum (0.990) PIC values recorded for primer pair EcoRI AC*/MseI-CAC and EcoRI AC*/MseI-CAT, respectively. Pairwise genetic similarity estimates ranged in between 0.6412 and 0.943 with a mean of 0.797. Triguna, an indica high yielding variety (HYV), and a new plant type (NPT) rice, IR 7946-46-1-3-2 having indica x japonica parentage showed minimum genetic similarity coefficient (0.641) with maximum genetic divergence, whereas ADT 41 and Sasyasree, two indica HYVs displayed maximum genetic similarity coefficient—0.953 with lowest genetic distance. All accessions could be clearly identified by using five primer pairs, offers immense scope of AFLP in assessing genetic diversity in rice. The present study also identified prospective varieties for use in selective hybridization and productive progeny selection. Most of the varieties shared distinct clusters based on varietal types, race, parentage and growing area where those are cultivated traditionally albeit with a few exceptions. The dendrogram could demarcate the varieties irrespective of race with unique traits, albeit with exceptions, which warrants further experimentation involving more number of primers in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anjana B, Choudhury PR, Pande V, Mandal AB (2015) Variety identification and genetic diversity analysis in rice (Oryza sativa L.) using STMS markers. Int J Fundam Appl Sci 4(3):72–80

    Google Scholar 

  • Anon (2014) All India Area, Production and Yield of Rice along with Coverage under Irrigation, Agriculture Statistics at a Glance 2014, Department of Agriculture and Cooperation, Directorate of Economics and Statistics. Govt of India, New Delhi, pp 452

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment amongwheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    Article  CAS  Google Scholar 

  • Bates SRE, Knorr DA, Weller JW, Ziegle JS (1996) Instrumentation for automated molecular marker acquisition and data analysis. In: The Impact of plant molecular genetics. pp 239–255

    Chapter  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81(10):1309–1326

    Article  Google Scholar 

  • Burkhamer RL, Lanning SP, Martens RJ, Martin JM, Talbert LE (1998) Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci. 38:243–248

    Article  Google Scholar 

  • Cheung WY, Moore G, Money TA, Gale MD (1992) HpaII library indicates‘methylation-free islands’ in wheat and barley. Theor Appl Genet 84:739–746

    Article  CAS  Google Scholar 

  • Cho YG, Blair MW, Panaud O, McCouch SR (1996) Cloning and map** of variety specific rice genomic DNA sequences: amplified fragment-length polymorphism (AFLP) from silver stained polyacrylamide gels. Genome 39:373–378

    Article  CAS  Google Scholar 

  • Cho YC, Shin YS, Ahn SN, Gleen BG, Kang KH, Darshan B, Moon HP (1999) DNA fingerprinting of rice cultivars using AFLP and RAPD markers. Korean J Crop Sci 44(1):26–31

    Google Scholar 

  • Conway G, Toenniessen G (1999) Feeding the world in the twenty-first century. Nature 402(6761):C55

    Article  CAS  Google Scholar 

  • Das M, Banerjee S, Topdar N, Kundu A, Sarkar D, Sinha MK, Balyan HS, Gupta PK (2011) Development of large-scale AFLP markers in jute. J Plant Biochem Biotechnol 20(2):270–275

    Article  Google Scholar 

  • Datta SK (2002) Recent developments in transgenics for abiotic stress tolerance in rice. JIRCAS Work Rep 2002:43–53

    Google Scholar 

  • Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93(8):1202–1210

    Article  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Khush GS, Baenziger PS (1998) Crop improvement: emerging trends in rice and wheat. In: Crop Productivity and Sustainability—Sha** the Future, Proceedings of the 2nd International Crop Science Congress, pp 113–125)

  • Lookhart GEOR, Bean S (1995) Separation and characterization of wheat protein fractions by high-performance capillary electrophoresis. Cereal Chem 72(6):527–532

    CAS  Google Scholar 

  • Mackill DJ, Zhang Z, Redona ED, Colowit PM (1996) Level of polymorphism and genetic map** of AFLP markers in rice. Genome 39(5):969–977

    Article  CAS  Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE, Suárez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41(3):682–690

    Article  CAS  Google Scholar 

  • Martos V, Royo C, Rharrabti Y, Del Moral LG (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91(1):107–116

    Article  Google Scholar 

  • Messmer MM, Melchinger AE, Hermann RG, Boppermaier J (1993) Relationships among early European Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varietes and breeding material based on RFLP data. Theor Appl Genet 96:435–446

  • Metakovsky EV, Branlard G (1998) Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet 96(2):209–218

    Article  CAS  Google Scholar 

  • Murtaza N (2006) Cotton genetic diversity study by AFLP markers. Electron J Biotechnol 9(4)

    Article  CAS  Google Scholar 

  • Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12(1):3–8

    Article  Google Scholar 

  • Powel W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238

    Article  Google Scholar 

  • Subudhi PK, Nandi S, Casal C, Virmani SS, Huang N (1998) Classification of rice germplasm: III. High-resolution fingerprinting of cytoplasmic genetic male-sterile (CMS) lines with AFLP. Theor Appl Genet 96(6–7):941–949

    Article  CAS  Google Scholar 

  • Varshney RK, Bansal KC, Agarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in variable climate: hope or hype? Trends Plant Sci 16:363–371

    Article  CAS  Google Scholar 

  • Vkuylstee M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xxia C, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet 83(5):565–581

    Article  CAS  Google Scholar 

  • Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ (1998) AFLP markers for the study of rice biodiversity. Theor Appl Genet 96(5):602–611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, Indian Institute of Seed Science (erstwhile Directorate of Seed Research) Research, Mau 275101, UP for the concept, self-involvement and guidance in executing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit B. Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.B., Mukherjee, P., Bora, A. et al. Amplified fragment length polymorphism analysis to assess genetic diversity in rice. Vegetos 33, 83–91 (2020). https://doi.org/10.1007/s42535-019-00082-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-019-00082-9

Keywords

Navigation