Log in

AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98:1320–1328

    Article  CAS  Google Scholar 

  • Aghazade Gholaki R, Ghareiazi B, Nematzadeh GA, Babaeian NA (2003) Classification of some Iranian rice germplasms by use of RAPD marker. Iranian J Agric Sci 34:757–767

    Google Scholar 

  • Akagi K, Sandig V, Vooijs M, Van der Valk M, Giovannini M, Strauss M, Berns A (1997) Pre-mediated somatic site-specific recombination in mice. Nucl Acids Res 25:1766–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnao E, Jayaro Y, Hinrichsen P, Ramis C, Marin C, Perez-Almeida I (2008) AFLP markers in the evaluation of genetic diversity of rice varieties and elite lines in Venezuela. Interciencia 33:359–364

    Google Scholar 

  • Ashikawa I, Fukuta Y, Tamura K, Yagi T (1999) Application of AFLP technique that uses non-radioactive fluorescent primers to the detection of genetic diversity in Japanese rice cultivars and cloning of DNA sequences derived from an indica genome. Breed Sci 49:225–231

    Article  CAS  Google Scholar 

  • Babaeian Jolodar M, Nematzadeh Gh, Karbalaei A, Naeib M (1999) Study on variation of agronomical traits in rice landraces of Mazandaran Province. J Sci Res 15–26

  • Bajpai PK, Warghat AR, Sharma RK, Yadav A, Thakur AK, Srivastava RB, Stobdan T (2014) Structure and genetic diversity of natural populations of Morus alba in the Trans-Himalayan Ladakh Region. Biochem Genet 52:137–152

    Article  CAS  PubMed  Google Scholar 

  • Bao JS, Corke H, Sun M (2006) Analysis of genetic diversity and relationships in waxy rice (Oryza sativa L.) using AFLP and ISSR markers. Genet Resour Crop Evol 53:323–330

    Article  CAS  Google Scholar 

  • Basabdatta D, Sengupta S, Parida SK, Roy B, Ghosh M, Prasad M, Ghose TK (2013) Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet 14:71

    Google Scholar 

  • Bautista NS, Solis R, Kamijima O, Ishii T (2001) RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice Genes. Genet Syst 76:71–79

    Article  CAS  Google Scholar 

  • Blair MW, Panaud O, McCouch SR (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98:780–792

    Article  CAS  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting: a strategy for genome analysis. Plant Mol Biol Rep 4:294–307

    Article  Google Scholar 

  • Caicedo AL, Gaitan E, Duque MC, Chica OT, Tohma J (1999) AFLP fingerprinting of Phaseolus lunatus L. and related wild species from South America. Crop Sci 39:1497–1507

    Article  Google Scholar 

  • Cheng ZQ, Ying FY, LI DQ, Yu TQ, Fu J, Yan HJ, Zhong QF, Zhang DY, Li WJ, Huang XQ (2012) Genetic diversity of wild rice species in Yunnan province of china. Rice Sci 19:21–28

    Article  Google Scholar 

  • Christopoulos MV, Rouskas D, Tsantili E, Bebeli PJ (2010) Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by Inter-Simple Sequence Repeat (ISSR) markers. Sci Hort 125:584–592

    Article  CAS  Google Scholar 

  • De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet 103:1254–1265

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Federici MT, Vaughan DA, Tomooka N, Kaga A, Wang X, Doi K (2001) Analysis of Uruguayan weedy rice genetic diversity using AFLP molecular markers. Electronic J Biotech 4:131–145

    Article  Google Scholar 

  • Feng SG, Lu JJ, Gao L, Liu JJ, Wang HZ (2014) Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China. Biochem Genet 52:127–136

    Article  CAS  PubMed  Google Scholar 

  • Fuentes JL, Escobar F, Alvarez A, Gallego G, Duque MC, Ferrer M, Deus JE, Tohme JM (1999) Analysis of genetic diversity in Cuban rice varieties using isozyme, RAPD and AFLP markers. Euphytica 109:107–115

    Article  CAS  Google Scholar 

  • Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  PubMed  Google Scholar 

  • Huang M, **e FM, Chen LY, Zhao XQ, Jojee L, Madonna D (2010) Comparative analysis of genetic diversity and structure in rice using ILP and SSR markers. Rice Sci 17:257–268

    Article  Google Scholar 

  • Jiang SK, Zhong M, Xu ZJ, Zhang L, Ma H, Liu SX (2006) Classification of rice cultivars with RAPD molecular markers. J Shenyang Agric Univ 37:639–644

    Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  • Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    Article  CAS  Google Scholar 

  • Keivani M, Ramezanpour SS, Soltanloo H, Choukan R, Naghavi MR, Ranjbar M (2010) Genetic diversity assessment of alfalfa (Medicago sativa L.) populations using AFLP markers. AJCS 4:491–497

    CAS  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kush Gh (1996) Varietal needs for different environments and breeding strategies. In Siddig EA (ed) New Frontiers in Rice Research. Directorate of Rice Research, Hyderabad, India, pp 68–75, 1987

  • Mackill DJ (1995) Plant genetic resources. Classifying japonica rice cultivars with RAPD markers. Crop Sci 35:889–894

    Article  CAS  Google Scholar 

  • Mackill DJ, Zhang Z, Redoña ED, Colowit PM (1996) Level of polymorphism and genetic map** of AFLP markers in rice. Genome 39:969–977

    Article  CAS  PubMed  Google Scholar 

  • Maheswaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N (1997) Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94:39–45

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Maqsood M, Shehzad MA, Ali SNA, Iqbal M (2013) Rice cultures and nitrogen rate effects on yield and quality of rice (Oryza sativa L.). Turk J Agric For 37:665–673

    Article  CAS  Google Scholar 

  • Martin JH, Leonardo WH, Stamp DL (1976) Principles of field crop production. 3th edition. Collier Macmillan

  • Mathure S, Jawali N, Nadaf A (2010) Diversity analysis in selected non-basmati scented rice collection. Rice Sci 17:35–42

    Article  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Waugh R (1997) Comparison of PCR based markers systems for the analysis of genetic relationship in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • Murray HC, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1973) Analysis of genetic diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nematzadeh GA, Kiani G (2007) Agronomic and quality characteristic of high-yielding rice. Pak J Biol Sci 10:141–144

    Google Scholar 

  • Olufowote JO, Xu Y, Chen X, Park WD, Beachell HM, Goto M, McCouch SR (1997) Comparative evaluation of within cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40:370–378

    Article  CAS  PubMed  Google Scholar 

  • Panaud O, McCouch SR, Chen X (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Mm Hanafey, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc numerical taxonomy and multivariate analysis system version 2.0 user guide. Applied Biostatistics Inc, Setauket, New York

  • Saker MM, Youssef SS, Abdallah NA, Bashandy HS, El-Sharkawy AM (2005) Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP. Afr J Biotechnol 4:882–890

    CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2001) Arlequin: a software for population genetics data analysis, Version 2.0. Genetics and Biometry Lab, Department of Anthropology, University of Geneva, Geneva

  • Second G (1982) Origin of the genetic diversity of cultivated rice (Oryza spp.): Study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Sorkheh K, Amini F (2010) Principle and procedures of multivariate statistical analysis. Daneshparvar Press, Tehran

    Google Scholar 

  • Sorkheh K, Shiran B, Aranzana MJ, Mohammadi SA, Martínez-Gomez P (2007a) Application of amplified fragment length polymorphism (AFLPs) analysis to plant breeding and genetics: procedures, applications and prospects. J Food Agric Env 5:197–204

    CAS  Google Scholar 

  • Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martinez-Gomez P, Asadi E (2007b) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156:327–344

    Article  CAS  Google Scholar 

  • Thanh ND, Zheng HG, Dong NV, Trinh LN, Ali ML, Nguyen HT (1999) Genetic variation in root morphology and microsatellite DNA loci in upland rice (Oryza sativa L.) from Vietnam. Euphytica 105:43–51

    Article  Google Scholar 

  • Van Beuningen LT, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Sci 37:981–988

    Article  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: as software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Virk PS, Newbury HJ, Jackson MT, Ford-Lloyd BV (1995) The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor Appl Genet 90:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weising K, Nybon H, Wolff K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRC Press, Boca Raton, USA

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart D (1980) CLASTAN user manual, 3rd edn. Program Library Unit, University of Edinburgh, Edinburgh

  • **ao J, Li J, Yuan L, McCouch SR, Tanksley SD (1996) Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR based markers. Theor Appl Genet 92:637–643

    Article  CAS  PubMed  Google Scholar 

  • Yang GP, Maroof MAS, Xu CG, Zang Q, Baiyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194

    Article  CAS  PubMed  Google Scholar 

  • Zabeau M (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application No. 0-534-858-A1

  • Zhang CH, Li JZ, Zhu Z, Zhang YD, Zhao L, Wang CL (2010) Cluster analysis on japonica rice (Oryza sativa L.) with good eating quality based on SSR markers and phenotypic traits. Rice Sci 17:111–121

    Article  CAS  Google Scholar 

  • Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ (1998) AFLP markers for study of rice biodiversity. Theor Appl Genet 96:602–611

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplication. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shahid Chamran University of Ahwaz, Iran and the Rice Research foundation, Rasht, Iran. The authors would like to thank Mohammad Bagher Mahdieh Najafabadi for his help during phenotypic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Sorkheh.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorkheh, K., Masaeli, M., Chaleshtori, M.H. et al. AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set. Biochem Genet 54, 177–193 (2016). https://doi.org/10.1007/s10528-016-9711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-016-9711-7

Keywords

Navigation