Log in

Green synthesis of silver and gold ultra nanocomposites from silk fibroin and their application for treatment of endodontic infections

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The present study is designed to investigate the antibacterial efficacy of B. mori silk fibroin based silver and gold ultra bio-nanocomposites (SF-AgUNC and SF-AuUNC) against Enterococcus faecalis for endodontic disinfection. The SF-AgUNC and SF-AuUNC based irrigant solution was tested in- vitro against Enterococcus faecalis (ATCC: 29212). In this direction, SF-AgUNC and SF-AuUNC synthesized by silk fibroin are very important as they are economically cheap and easy to biosynthesize. The synthesis of SF-AgUNC and SF-AuUNC was accomplished by dissolving 1 mM silver nitrate and 0.5 mM auric chloride respectively in 10 ml of fibroin as precursors. The structural and morphological analysis was executed by UV-Vis Spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopic analysis (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS). The qualitative antimicrobial activity of SF-AgUNC and SF-AuUNC were performed against inoculum of Enterococcus faecalis containing 1⨯105 CFU/ ml. The same solutions were tested on dentine specimens inoculated with bacterial cultures and found remarkable biofilm reduction. The structural and morphological analysis reveals the formation of SF-AgUNC and SF-AuUNC having quasi-spherical morphology. The average particle size for SF-AgUNC and SF-AuUNC was same (~ 8 nm). The XRD study confirms that, both SF-AgUNC and SF-AuUNC were crystalline in nature. The bacterial growth inhibition and significant biofilm reduction was observed on dentine specimens treated with SF-AgUNC, SF-AuUNC and positive control. In antibacterial study, at 30 μg/well concentration of SF-AgUNC and SF-AuUNC, 3.13 ± 0.22 and 1.13 ± 0.22 cm of zone of inhibition was noted respectively. Moreover, growth of Enterococcus faecalis was completely inhibited at 20 μg/ml and 30 μg/ml when treated with SF-AgUNC and SF-AuUNC respectively. Hence, the present study concludes that SF-AgUNC and SF-AuUNC can be used as an effective intracanal medicament for the treatment of dental problems with no cyto toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All the data is included in the manuscript.

References

  1. S.M. Cirino, S. Scantlebury, Dental caries in develo** countries: preventive and restorative approaches to treatment. N. Y. State Dent. J. 64(2), 32–39 (1998) https://pubmed.ncbi.nlm.nih.gov/9542392/

    CAS  PubMed  Google Scholar 

  2. N.J. Kassebaum, A.G. Smith, E. Bernabe, T.D. Fleming, A.E. Reynolds, T. Vos, C.J.L. Murray, W. Marcenes, GBD 2015, Oral Health Collaborators, Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dental Res. 96(4), 380–387 (2017). https://doi.org/10.1177/0022034517693566

    Article  CAS  Google Scholar 

  3. T. Vos, A.A. Abajobir, K.H. Abate, C. Abbafati, K.M. Abbas, F. Abd-Allah, R.S. Abdulkader, A.M. Abdulle, T.A. Abebo, S.F. Abera, V. Aboyans, Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100), 1211–1259 (2017). https://doi.org/10.1016/S0140-6736(17)32154-2

    Article  Google Scholar 

  4. W.H. Bowen, R.A. Burne, H. Wu, H. Koo, Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbial 26(3), 229–242 (2018). https://doi.org/10.1016/j.tim.2017.09.008

    Article  CAS  Google Scholar 

  5. P.C. Baehni, Y. Takeuchi, Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis. 9(suppl 1), 23–29 (2003). https://doi.org/10.1034/j.1601-0825.9.s1.5.x

    Article  PubMed  Google Scholar 

  6. P. Bhardwaj, S. Krishnappa, Various approaches for prevention of dental caries with emphasis on probiotics: a review. IOSR J. Dent. Med. Sci. 1, 62–67 (2014) https://www.iosrjournals.org/iosr-jdms/papers/Vol13-issue2/Version-1/O013216267.pdf

    Article  Google Scholar 

  7. H.Y. Wang, J.W. Cheng, H.Y. Yu, L. Lin, Y.H. Chih, Y.P. Pan, Efficacy of a novel antimicrobial peptide against periodontal pathogens in both planktonic and polymicrobial biofilm states. Acta Biomater. 25, 150–161 (2015). https://doi.org/10.1016/j.actbio.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  8. P.C. Mane, M.D. Shinde, S. Varma, B.P. Chaudhari, A. Fatehmulla, M. Shahabuddin, D.P. Amalnerkar, A.M. Aldhafiri, R.D. Chaudhari, Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-020-61130-y

    Article  CAS  Google Scholar 

  9. P.C. Mane, R.D. Chaudhari, M.D. Shinde, D.D. Kadam, C.K. Song, D.P. Amalnerkar, H. Lee, Designing ecofriendly bionanocomposite assembly with improved antimicrobial and potent on-site zika virus vector larvicidal activities with its mode of action. Sci. Rep. 7(1), 1–12 (2017). https://doi.org/10.1038/s41598-017-15537-9

    Article  CAS  Google Scholar 

  10. S.C. Motshekga, S.S. Ray, M.S. Onyango, M.N. Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 262, 439–446 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.074

    Article  CAS  PubMed  Google Scholar 

  11. Z. Cheng, A. Al Zaki, J.Z. Hui, V.R. Muzykantov, A. Tsourkas, Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109), 903–910 (2012). https://doi.org/10.1126/science.1226338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E.M. Decker, R. Weiger, I. Wiech, P.E. Heide, M. Brecx, Comparison of antiadhesive and antibacterial effects of antiseptics on Streptococcus sanguinis. Eur. J. Oral Sci. 111(2), 144–148 (2003). https://doi.org/10.1034/j.1600-0722.2003.00025.x

    Article  CAS  PubMed  Google Scholar 

  13. T. Asakura, M. Kitaguchi, M. Demura, H. Sakai, K. Komatsu, Immobilization of glucose oxidase on nonwoven fabrics with Bombyx mori silk fibroin gel. J. Appl. Polym. Sci. 46, 49–53 (1992). https://doi.org/10.1002/app.1992.070460106

    Article  CAS  Google Scholar 

  14. G. Cheng, Z. Davoudi, X. **ng, X. Yu, X. Cheng, Z. Li, H. Deng, Q. Wang, Advanced silk fibroin biomaterials for cartilage regeneration advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomater. Sci. Eng 4, 2704–2715 (2018). https://doi.org/10.1021/acsbiomaterials.8b00150

    Article  CAS  PubMed  Google Scholar 

  15. W.P. Xu, W. Zhang, R. Asrican, H.J. Kim, D.L. Kaplan, P.C. Yelick, Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng. – Part A 14, 549–557 (2008). https://doi.org/10.1089/tea.2007.0227

    Article  CAS  PubMed  Google Scholar 

  16. R.L. Moy, A. Lee, A. Zalka, Commonly used suture materials in skin surgery. Am. Fam. Physician 44, 2123–2128 (1991) https://pubmed.ncbi.nlm.nih.gov/1746393/

    CAS  PubMed  Google Scholar 

  17. N. Kasoju, U. Bora, Silk fibroin in tissue engineering. Adv. Healthcare Mater 1, 393–412 (2012). https://doi.org/10.1002/adhm.201200097

    Article  CAS  Google Scholar 

  18. B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomater 25, 1289–1297 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.045

    Article  CAS  Google Scholar 

  19. Y. Wang, D.D. Rudym, A. Walsh, L. Abrahamsen, H.J. Kim, H.S. Kim, C. Kirker-Head, D.L. Kaplan, In vivo degradation of three-dimensional silk fibroin scaffolds. Biomater 29, 3415–3428 (2008). https://doi.org/10.1016/j.biomaterials.2008.05.002

    Article  CAS  Google Scholar 

  20. J.W. Yang, Y.F. Zhang, Z.Y. Sun, G.T. Song, Z. Chen, Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J. Biomater. Appl. 30(2), 221–229 (2015). https://doi.org/10.1177/0885328215577296

    Article  CAS  PubMed  Google Scholar 

  21. M.J.R. Virlan, B. Calenic, C. Zaharia, M. Greabu, Silk fibroin and potential uses in regenerative Dental Medicine. Stoma. Edu. J 1(2), 108–115 (2014). https://doi.org/10.25241/stomaeduj.2014.1(2).art.5

    Article  Google Scholar 

  22. A. Kopp, R. Smeets, M. Gosau, R.E. Friedrich, S. Fuest, M. Behbahani, M. Barbeck, R. Rutkowski, S. Burg, L. Kluwe, Production and characterization of porus fibroin scafolds for regenerative medical application. In Vivo 33, 757–762 (2019). https://doi.org/10.21873/invivo.11536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Martıínez-Mora, A. Mrowiec, E.M. Garcia-Vizcaino, A. Alcaraz, J.L. Cenis, F.J. Nicolas, Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One 7, e42271 (2012). https://doi.org/10.1371/journal.pone.0042271

    Article  CAS  Google Scholar 

  24. A.A. Lozano-Pérez, A.L. Gil, S.A. Pérez, N. Cutillas, H. Meyer, M. Pedreno, S.D. Aznar-Cervantes, C. Janiak, J.L. Cenis, J. Ruiz, Antitumor properties of platinum [IV] prodrug-loaded silk fibroin nanoparticles. Dalton Trans. 44, 13513–13521 (2015). https://doi.org/10.1039/C5DT00378D

    Article  CAS  PubMed  Google Scholar 

  25. D.N. Rockwood, R.C. Preda, T. Yucel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011). https://doi.org/10.1038/nprot.2011.379

    Article  CAS  PubMed  Google Scholar 

  26. J.N. Chin, R.N. Jones, H.S. Sader, P.B. Savage, M.J. Rybak, Potential synergy activity of the novel ceragenin, CSA-13, against clinical isolates of Pseudomonas aeruginosa, including multidrug-resistant P. aeruginosa. J. Antimicrob. Chemother. 61(2), 365–370 (2008). https://doi.org/10.1093/jac/dkm457

    Article  CAS  PubMed  Google Scholar 

  27. H.J. Heipieper, R. Diefenbach, H. Kewelol, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 1847–1852 (1992). https://doi.org/10.1128/aem.58.6.1847-1852.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Mane, R. Chaudhari, N. Qureshi, M. Shinde, T. Kim, D. Amalnerkar, Silver nanoparticles-silk fibroin nanocomposite based colorimetric bio-interfacial sensor for on-site ultra-trace impurity detection of mercury ions. J. Nanosci. Nanotechnol 20(4), 2122–2129 (2020). https://doi.org/10.1166/jnn.2020.17335

    Article  CAS  PubMed  Google Scholar 

  29. M. Amina, N.M.A. Musayeib, N.A. Alarfaj, M.F. El-Tohamy, G.A. Al-Hamoud, Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomater 10, 2453 (2020). https://doi.org/10.3390/nano10122453

    Article  CAS  Google Scholar 

  30. S. Yallappa, J. Manjanna, B.L. Dhananjaya, Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectro 137, 236–243 (2015). https://doi.org/10.1016/j.saa.2014.08.030

    Article  CAS  Google Scholar 

  31. L. Lv, C. Chen, H.W. Hou, X.H. Zhang, P. Lan, Structure analysis and cesium adsorption mechanism evaluation of sodium copper ferrocyanide. J. Radioanal. Nucl. Chem. 331, 5835–5842 (2022). https://doi.org/10.1007/s10967-022-08633-2

    Article  CAS  Google Scholar 

  32. C. Singh, R.K. Baboota, P.K. Naik, H. Singh, Biocompatible synthesis of silver and gold nanoparticles using leaf extract of Dalbergia Sissoo. Adv. Mater. Lett. 3(4), 279–285 (2012). https://doi.org/10.5185/amlett.2011.10312

    Article  CAS  Google Scholar 

  33. A.C. Joshi, G.B. Markad, S.K. Haram, Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: Their application for the amperometric detection of glucose in the human blood samples. Electrochim. Acta 161, 108–114 (2015). https://doi.org/10.1016/j.electacta.2015.02.077

    Article  CAS  Google Scholar 

  34. K. Hareesh, J.F. Williams, N.A. Dhole, K.M. Kodam, V.N. Bhoraskar, S.D. Dhole, Bio-green synthesis of Ag–GO, Au–GO and Ag–Au–GO nanocomposites using Azadirachta indica: its application in SERS and cell viability. Mater. Res. Expr 3, 075010 (2016). https://doi.org/10.1088/2053-1591/3/7/075010

    Article  CAS  Google Scholar 

  35. D. Briggs, M.P. Seah, in Vol. 1: Auger and X-ray Photoelectron Spectroscopy John Willey & Sons, Chichester-New York-Brisbane-Toronto-Singapore, Salle+ Sauerlander. Practical Surface Analysis (Willey, New York, 1990) https://books.google.co.in/books/about/Practical_Surface_Analysis_Auger_and_X_r.html?id=D9pTAAAAMAAJ&redir_esc=y

    Google Scholar 

  36. W. Liu, D. Sun, J. Fu, R. Yuan, Z. Li, Assembly of evenly distributed Au nanoparticles on thiolated reduced graphene oxide as an active and robust catalyst for hydrogenation of 4-nitroarenes. RSC Adv. 4, 11003–11011 (2014). https://doi.org/10.1039/C3RA47829G

    Article  CAS  Google Scholar 

  37. S. Das, B.B. Dhar, Green synthesis of noble metal nanoparticles using cysteine-modified silk fibroin: catalysis and antibacterial activity. RSC Adv. 4(86), 46285–46292 (2014). https://doi.org/10.1039/C4RA06179A

    Article  CAS  Google Scholar 

  38. X. Fei, M. Jia, X. Du, Y. Yang, R. Zhang, Z. Shao, X. Zhao, X. Chen, Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromol 14(12), 4483–4488 (2013). https://doi.org/10.1021/bm4014149

    Article  CAS  Google Scholar 

  39. A.M. Grant, H.S. Kim, T.L. Dupnock, K. Hu, Y.G. Yingling, V.V. Tsukruk, Silk Fibroin-Substrate interactions at Heterogeneous nanocomposite interface. Adv. Funct. Mater. 26, 6380–6392 (2016). https://doi.org/10.1002/adfm.201601268

    Article  CAS  Google Scholar 

  40. X.W. Huang, J.J. Wei, T. Liu, X.L. Zhang, S.M. Bai, H.H. Yang, Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale 9(44), 17193–17198 (2017). https://doi.org/10.1039/C7NR06807G

    Article  CAS  PubMed  Google Scholar 

  41. M.C. Belda, V. Fitzpatrick, D.L. Kaplan, J. Landoulsi, E. Guenin, C. Egles, Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials. Front Chem 8, 604398 (2020). https://doi.org/10.3389/fchem.2020.604398

    Article  CAS  Google Scholar 

  42. S. Priyadarsini, S. Mukherjee, M. Mishra, Nanoparticles used in dentistry: A review. J Oral Biol Craniofacial Res 8(1), 58–67 (2018). https://doi.org/10.1016/j.jobcr.2017.12.004

    Article  Google Scholar 

  43. I.X. Yin, I.S. Zhao, M.L. Mei, Q. Li, O.Y. Yu, C.H. Chu, Use of silver nanomaterials for caries prevention: a concise review. Int J Nanomed 15, 3181–3191 (2020). https://doi.org/10.2147/IJN.S253833

    Article  CAS  Google Scholar 

  44. Y. Abo-zeid, G.R. Williams, The potential anti-infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 12(2), e1592 (2020). https://doi.org/10.1002/wnan.1592

    Article  PubMed  Google Scholar 

  45. F. Morgan-Sagastume, P. Larsen, J.L. Nielsen, P.H. Nielsen, Characterization of the loosely attached fraction of activated sludge bacteria. Water Res. 42(4-5), 843–854 (2008). https://doi.org/10.1016/j.watres.2007.08.026

    Article  CAS  PubMed  Google Scholar 

  46. Y. Jiao, F.R. Tay, L.N. Niu, J.H. Chen, Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 11(3), 1–11 (2019). https://doi.org/10.1038/s41368-019-0062-1

    Article  CAS  Google Scholar 

  47. N.S. Re**old, G. Choi, J.H. Choy, Chitosan hybrids for cosmeceutical applications in skin, hair and dental care: an update. Emerg. Mater. 4(5), 1125–1142 (2021). https://doi.org/10.1007/s42247-021-00280-9

    Article  CAS  Google Scholar 

  48. O.A. El Seoud, K. Jedvert, M. Kostag, S. Possidonio, Cellulose, chitin and silk: the cornerstones of green composites. Emerg. Mater. 5, 785–810 (2021). https://doi.org/10.1007/s42247-021-00308-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravindra D. Chaudhari or Sachin B. Agawane.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, P.C., Pawar, J., Mane, D.P. et al. Green synthesis of silver and gold ultra nanocomposites from silk fibroin and their application for treatment of endodontic infections. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00757-3

Navigation