Log in

Flow field, heat transfer and inclusion behavior in a round bloom mold under effect of a swirling flow submerged entry nozzle

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Flow field, heat transfer and inclusion behavior in a 700 mm round bloom mold under the effect of a swirling flow submerged entry nozzle (SEN) were investigated with the aim to enhance the casting process. The results indicate that the im**ing flow phenomenon, which is commonly observed in conventional single-port SEN casting, was completely suppressed by the swirling flow SEN coming from a novel swirling flow generator design in tundish. Steel from the SEN port moved towards the mold wall in 360° direction, leading to a uniform temperature distribution in the mold. Compared to a conventional single-port SEN casting, the steel super-heat was decreased by about 5 K at the mold center, and the temperature was increased by around 3.5 K near the meniscus. In addition, the removal ratio of inclusions to the mold top surface in the swirling flow SEN casting was found to be increased. Specifically, the removal ratio of spherical inclusions with diameters of 1, 10, 50 and 100 μm was increased by 18.2%, 18.5%, 22.6% and 42.7%, respectively. Furthermore, the ratio was raised by 18.2%, 20.8%, 21.5% and 44.1% for non-spherical inclusions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.Q. Cai, X.D. Wang, M. Yao, J. Iron Steel Res. Int. 29 (2022) 80–87.

    Article  Google Scholar 

  2. A.Y. Deng, E.G. Wang, J.C. He, J. Iron Steel Res. Int. 13 (2006) 13–16.

    Article  Google Scholar 

  3. B. Yang, A.Y. Deng, Y. Li, X.J. Xu, E.G. Wang, J. Iron Steel Res. Int. 26 (2019) 219–229.

    Article  Google Scholar 

  4. D.B. Jiang, L.F. Zhang, Y.D. Wang, J. Iron Steel Res. Int. 29 (2022) 124–131.

    Article  Google Scholar 

  5. Y.D. Wang, L.F. Zhang, W. Yang, Y. Ren, J. Iron Steel Res. Int. 29 (2022) 237–246.

    Article  Google Scholar 

  6. Z.G. Yang, B. Wang, X.F. Zhang, Y.T. Wang, H.B. Dong, Q. Liu, J. Iron Steel Res. Int. 21 (2014) 1095–1103.

    Article  Google Scholar 

  7. B.X. Wang, W. Chen, Y. Chen, Y.P. Feng, Ironmak. Steelmak. 42 (2015) 63–69.

    Article  Google Scholar 

  8. H.Q. Yu, M.Y. Zhu, Acta Metall. Sin. (Engl. Lett.) 22 (2009) 461–467.

    Article  Google Scholar 

  9. M.Y. Zhang, Y.P. Bao, C. Gu, C. Yao, Ironmak. Steelmak. (2022) https://doi.org/10.1080/03019233.2022.2119062.

    Article  Google Scholar 

  10. T. Sun, F. Yue, H.J. Wu, C. Guo, Y. Li, Z.C. Ma, J. Iron Steel Res. Int. 23 (2016) 329–337.

    Article  Google Scholar 

  11. H.Q. Yu, M.Y. Zhu, Ironmak. Steelmak. 39 (2012) 574–584.

    Article  Google Scholar 

  12. X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, X.C. Huang, Steel Res. Int. 90 (2019) 1800133.

    Article  Google Scholar 

  13. S. Yokoya, Y. Asako, S. Hara, J. Szekely, ISIJ Int. 34 (1994) 883–888.

    Article  Google Scholar 

  14. H.B. Sun, J.Q. Zhang, Metall. Mater. Trans. B 45 (2014) 936–946.

    Article  Google Scholar 

  15. H.B. Sun, L.J. Li, Ironmak. Steelmak. 43 (2016) 228–233.

    Article  Google Scholar 

  16. H.B. Sun, L.J. Li, C.B. Liu, Metals 8 (2018) 842.

    Article  Google Scholar 

  17. C.L. Wu, X.M. Liu, Q. Wang, M. He, X.W. Zhu, D.W. Li, L.J. Zhao, H. Lei, Metall. Mater. Trans. B 52 (2021) 3571–3575.

    Article  Google Scholar 

  18. D.W. Li, Z.J. Su, K. Marukawa, J.C. He, J. Iron Steel Res. Int. 21 (2014) 159–165.

    Article  Google Scholar 

  19. Q.H. **e, M. Nabeel, M. Ersson, P.Y. Ni, Steel Res. Int. 93 (2022) 2100410.

    Article  Google Scholar 

  20. P.Y. Ni, L.T.I. Jonsson, M. Ersson, P.G. Jönsson, Steel Res. Int. 88 (2017) 1600155.

    Article  Google Scholar 

  21. P.Y. Ni, L.T.I. Jonsson, M. Ersson, P.G. Jönsson, ISIJ Int. 57 (2017) 2175–2184.

    Article  Google Scholar 

  22. P.Y. Ni, D.X. Wang, L.T.I. Jonsson, M. Ersson, T.A. Zhang, P.G. Jönsson, Metall. Mater. Trans. B 48 (2017) 2695–2706.

    Article  Google Scholar 

  23. P.Y. Ni, M. Ersson, L.T.I. Jonsson, P.G. Jönsson, Metall. Mater. Trans. B 49 (2018) 723–736.

    Article  Google Scholar 

  24. Q.H. **e, P.Y. Ni, M. Ersson, P.G. Jönsson, Y. Li, Metall. Mater. Trans. B 53 (2022) 3197–3214.

    Article  Google Scholar 

  25. Q. Fang, H.W. Ni, H. Zhang, B. Wang, Z. Lv, Metals 7 (2017) 146.

    Article  Google Scholar 

  26. B.R. Baliga, S.V. Patankar, Numerical Heat Transfer 3 (1980) 393–409.

    Article  Google Scholar 

  27. Ansys Inc, ANSYS Fluent 17.0 Theory Guide, Ansys Inc., Canonsburg, USA, 2016.

    Google Scholar 

  28. Ansys Inc, ANSYS Fluent 17.0 User’s Guide, Ansys Inc., Canonsburg, USA, 2016.

    Google Scholar 

  29. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, Comput. Fluids 24 (1995) 227–238.

    Article  Google Scholar 

  30. M.M. Gibson, B.E. Launder, J. Fluid Mech. 86 (1978) 491–511.

    Article  Google Scholar 

  31. F.S. Lien, M.A. Leschziner, Int. J. Numer. Meth. Fluids 19 (1994) 527–548.

    Article  Google Scholar 

  32. P.G. Saffman, J. Fluid Mech. 22 (1965) 385–400.

    Article  Google Scholar 

  33. S.A. Morsi, A.J. Alexander, J. Fluid Mech. 55 (1972) 193–208.

    Article  Google Scholar 

  34. A. Haider, O. Levenspiel, Powder Technol. 58 (1989) 63–70.

    Article  Google Scholar 

  35. A.D. Gosman, E. Ioannides, J. Energy 7 (1983) 482–490.

    Article  Google Scholar 

  36. X. Huang, B.G. Thomas, Can. Metall. Quart. 37 (1998) 197–212.

    Article  Google Scholar 

  37. Y. Yang, P.G. Jönsson, M. Ersson, Z. Su, J. He, K. Nakajima, Steel Res. Int. 86 (2015) 1312–1327.

    Article  Google Scholar 

  38. S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa, W. Yasugaira, S. Hara, ISIJ Int. 40 (2000) 584–588.

    Article  Google Scholar 

  39. M.H. Sha, T.M. Wang, J. Li, T.J. Li, J.Z. **, Int. J. Cast Met. Res. 24 (2011) 197–202.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51704062) and the Fundamental Research Funds for the Central Universities (Grant No. N2025019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei-yuan Ni or Ying Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, Qh., Ni, Py., Tanaka, T. et al. Flow field, heat transfer and inclusion behavior in a round bloom mold under effect of a swirling flow submerged entry nozzle. J. Iron Steel Res. Int. 30, 1211–1221 (2023). https://doi.org/10.1007/s42243-023-00975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00975-9

Keywords

Navigation