Log in

A Study on Solidification Behavior of a Large Round Bloom Affected by Swirling Flow Submerged Entry Nozzle Combined with Mold Electromagnetic Stirring

  • Topical Collection: 2023 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three-dimensional mathematical model was established to investigate the solidification behavior during the continuous casting of a round bloom with the diameter of 0.7 m, where a novel swirling flow submerged entry nozzle (SEN) combined with mold electromagnetic stirring (M-EMS) method was used. The results show that an im**ing flow phenomenon, which was normally formed in conventional single-port SEN casting, was effectively eliminated by adopting the new method. Molten steel from the swirling flow SEN port uniformly moved to the solidification front, which improved the dissipation rate of molten steel super-heat. When the rotational direction of the swirling flow in SEN was in the same direction as M-EMS, the super-heat of molten steel in mold can be decreased by 5 K, compared to the use of a conventional SEN with M-EMS. As the current intensity decreased from 310 to 100 A, the super-heat of molten steel in the mold center region was reduced by 3 K. This is due to that the shielding effect of M-EMS on rotational flow momentum from the swirling flow SEN became weak as the stirring intensity decreased. In addition, molten steel temperature near the meniscus under the current intensity of 310 and 100 A was 1787 K and 1790 K, respectively. The solidified shell thickness obtained by using 100 A current intensity was about 1 × 10−3 m larger than that of 310 A current intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L. Niu, S. Qiu, J. Zhao, Y. Chen, and S. Yang: Ironmak. Steelmak., 2018, vol. 46, pp. 835–44.

    Article  Google Scholar 

  2. Q. Dong, J. Zhang, Y. Yin, and B. Wang: Metals, 2017, vol. 7, p. 209.

    Article  Google Scholar 

  3. B. Yang, A. Deng, Y. Li, X. Xu, and E. Wang: J. Iron. Steel Res., 2019, vol. 26, pp. 219–29.

    Article  Google Scholar 

  4. D. Jiang, L. Zhang, and Y. Wang: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 124–31.

    Article  Google Scholar 

  5. Z. Ren, Z. Lei, C. Li, W. Xuan, Y. Zhong, and X. Li: Acta Metall. Sin.Sin., 2020, vol. 56, pp. 583–600.

    CAS  Google Scholar 

  6. C. Yao, M. Wang, M. Zhang, L. **ng, H. Zhang, and Y. Bao: J. Mater. Res. Technol., 2022, vol. 19, pp. 1766–76.

    Article  CAS  Google Scholar 

  7. P.P. Sahoo, A. Kumar, J. Halder, and M. Raj: ISIJ Int., 2009, vol. 49, pp. 521–28.

    Article  CAS  Google Scholar 

  8. Y. Su, Y. Liu, J. Guo, G. Liu, D. Xu, and J. Jia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2895–2902.

    Article  CAS  Google Scholar 

  9. H. Yu and M. Zhu: Ironmak. Steelmak., 2012, vol. 39, pp. 574–84.

    Article  CAS  Google Scholar 

  10. X. Wang, S. Wang, L. Zhang, S. Sridhar, A. Conejo, and X. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5496–5509.

    Article  Google Scholar 

  11. B. Ren, D. Chen, H. Wang, and M. Long: Steel Res. Int., 2015, vol. 86, pp. 1104–15.

    Article  CAS  Google Scholar 

  12. B. Ren, M. Zhu, H. Wang, and Y. Chen: Acta Metall. Sin., 2008, vol. 44, pp. 507–12.

    CAS  Google Scholar 

  13. K.H. Spitzer, M. Dubke, and K. Schwerdtfeger: Metall. Mater. Trans. B, 1986, vol. 17B, pp. 119–31.

    Article  Google Scholar 

  14. X. Li, B. Li, Z. Liu, R. Niu, and X. Huang: Steel Res. Int., 2019, vol. 90, p. 1800133.

    Article  Google Scholar 

  15. S. Yokoya, Y. Asako, S. Hara, and J. Szekely: ISIJ Int., 1994, vol. 34, pp. 883–88.

    Article  CAS  Google Scholar 

  16. S. Yokoya, R. Westoff, Y. Asako, S. Hara, and J. Szekely: ISIJ Int., 1994, vol. 34, pp. 889–95.

    Article  CAS  Google Scholar 

  17. S. Yokoya, S. Takagi, M. Iguchi, Y. Asako, R. Westoff, and S. Hara: ISIJ Int., 1998, vol. 38, pp. 827–33.

    Article  CAS  Google Scholar 

  18. S. Yokoya, P.G. Jönsson, K. Sasaki, K. Tada, S. Takagi, and M. Iguchi: ISIJ Int., 2004, vol. 33, pp. 22–28.

    CAS  Google Scholar 

  19. Y. Tsukaguchi, H. Hayashi, H. Kurimoto, S. Yokoya, K. Marukawa, and T. Tanaka: ISIJ Int., 2010, vol. 50, pp. 721–29.

    Article  CAS  Google Scholar 

  20. Y. Tsukaguchi, O. Nakamura, P. Jönsson, S. Yokoya, T. Tanaka, and S. Hara: ISIJ Int., 2007, vol. 47, pp. 1436–43.

    Article  CAS  Google Scholar 

  21. C. Wu, X. Liu, Q. Wang, M. He, X. Zhu, D. Li, L. Zhao, and H. Lei: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3571–75.

    Article  Google Scholar 

  22. H. Sun and J. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 936–46.

    Article  Google Scholar 

  23. H. Sun and L. Li: Ironmak. Steelmak., 2016, vol. 43, pp. 228–33.

    Article  CAS  Google Scholar 

  24. C. Wu, Q. Wang, D. Li, X. Zhu, B. **, L. Wang, and H. Lei: J. Mater. Res. Technol., 2020, vol. 9, pp. 5630–39.

    Article  CAS  Google Scholar 

  25. C. Wu, D. Li, X. Zhu, H. Shi, X. Liu, L. Zhao, H. Lei, and Q. Wang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1207–12.

    Article  Google Scholar 

  26. D. Li, Z. Su, K. Marukawa, and J. He: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 159–65.

    Article  CAS  Google Scholar 

  27. D. Li, Z. Su, J. Chen, Q. Wang, Y. Yang, K. Nakajima, K. Marukawa, and J. He: ISIJ Int., 2013, vol. 53, pp. 1187–94.

    Article  CAS  Google Scholar 

  28. H. Sun and J. Zhang: ISIJ Int., 2011, vol. 51, pp. 1657–63.

    Article  CAS  Google Scholar 

  29. P. Lin, Y. **, F. Yang, Z. Liu, R. **g, Y. Cao, Y. **ang, C. Cheng, and Y. Li: Metals, 2020, vol. 10, p. 691.

    Article  Google Scholar 

  30. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2016, vol. 87, pp. 1356–65.

    Article  CAS  Google Scholar 

  31. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1600155.

    Article  Google Scholar 

  32. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: ISIJ Int., 2017, vol. 57, pp. 2175–84.

    Article  CAS  Google Scholar 

  33. P. Ni, D. Wang, L.T.I. Jonsson, M. Ersson, T. Zhang, and P.G. Jönsson: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2695–2706.

    Article  Google Scholar 

  34. P. Ni, M. Ersson, L.T.I. Jonsson, and P.G. Jönsson: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 723–36.

    Article  Google Scholar 

  35. P. Ni, M. Ersson, L.T.I. Jonsson, T. Zhang, and P.G. Jönsson: Metals, 2018, vol. 8, p. 910.

    Article  CAS  Google Scholar 

  36. P. Ni, M. Ersson, L.T.I. Jonsson, T. Zhang, and P.G. Jönsson: Metals, 2018, vol. 8, p. 368.

    Article  Google Scholar 

  37. Q. **e, M. Nabeel, M. Ersson, and P. Ni: Steel Res. Int., 2021, vol. 93, p. 2100410.

    Article  Google Scholar 

  38. Q. **e, P. Ni, Y. Tanaka, M. Ersson, and Y. Li: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 1211–21.

    Article  Google Scholar 

  39. Q. **e, P. Ni, M. Ersson, P.G. Jönsson, and Y. Li: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3197–3214.

    Article  Google Scholar 

  40. Q. Fang, H. Ni, H. Zhang, B. Wang, and Z. Lv: Metals, 2017, vol. 7, p. 146.

    Article  Google Scholar 

  41. B. Ren, D. Chen, H. Wang, and M. Long: Steel Res. Int., 2015, vol. 86, pp. 1105–15.

    Article  Google Scholar 

  42. Y. Wang, L. Zhang, W. Yang, and Y. Ren: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 237–46.

    Article  Google Scholar 

  43. Y. Wang, L. Zhang, W. Chen, and Y. Ren: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2796–2805.

    Article  Google Scholar 

  44. S. Xu, W. Wu, J. Chang, S. Sha, and B. We: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 1–1.

    Google Scholar 

  45. Z. Shen, B. Zhou, Y. Zhong, L. Dong, H. Wang, L. Fan, T. Zheng, C. Li, W. Ren, W. Xuan, and Z. Ren: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3373–82.

    Article  Google Scholar 

  46. ANSYS: ANSYS Fluent Theory Guide, Release 17.0, ANSYS, Canonsburg, 2016.

    Google Scholar 

  47. H. Zhang, M. Wu, Z. Zhang, A. Ludwig, A. Kharicha, A. Rónaföldi, A. Roósz, Z. Veres, and M. Svéda: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2166–81.

    Article  Google Scholar 

  48. P.A. Davidson and J.C.R. Hunt: J. Fluid Mech., 1987, vol. 185, pp. 67–106.

    Article  CAS  Google Scholar 

  49. Z. Zhang, M. Wu, H. Zhang, A. Ludwig, and A. Kharicha: Steel Res. Int., 2022, vol. 93, p. 2200065.

    Article  CAS  Google Scholar 

  50. B.R. Baliga and S.V. Patankar: Numer. Heat Transf., 1980, vol. 3, pp. 393–409.

    Google Scholar 

  51. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu: Comput. Fluids, 1995, vol. 24, pp. 227–38.

    Article  Google Scholar 

  52. P. Mayeli and G.J. Sheard: Int. Commun. Heat Mass Transf., 2021, vol. 125, p. 105316.

    Article  Google Scholar 

  53. L. Zhang and Y. Wang: JOM, 2012, vol. 64, pp. 1063–74.

    Article  CAS  Google Scholar 

  54. Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1705–17.

    Article  Google Scholar 

  55. H. An, Y. Bao, M. Wang, and L. Zhao: Metall. Res. Technol., 2018, vol. 115, p. 103.

    Article  Google Scholar 

  56. W. Jiang, M. Long, T. Liu, D. Chen, H. Chen, J. Cao, H. Fan, S. Yu, and H. Duan: JOM, 2018, vol. 70, pp. 2059–64.

    Article  Google Scholar 

  57. T.B. Anderson and R. Jackson: Ind. Eng. Chem. Fundam., 1967, vol. 6, pp. 527–39.

    Article  CAS  Google Scholar 

  58. J. Ding and D. Gidaspow: AIChE J., 1990, vol. 36, pp. 523–38.

    Article  CAS  Google Scholar 

  59. R. Giorjao, B. Sutton, and A. Ramirez: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 2512–21.

    Article  Google Scholar 

  60. J. Wang, F. Wang, Y. Zhao, J. Zhang, and W. Ren: Int. J. Miner. Metall. Mater.Mater., 2009, vol. 16, pp. 640–45.

    CAS  Google Scholar 

  61. C. Yao, M. Wang, Y. Ni, D. Wang, H. Zhang, L. **ng, J. Gong, and Y. Bao: Int. J. Miner. Metall. Mater., 2023, vol. 30, pp. 1716–28.

    Article  CAS  Google Scholar 

  62. M. Gao, J. Gao, Y. Zhang, and S. Yang: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 380–89.

    Article  CAS  Google Scholar 

  63. R.D. Moralesa, G. Lopez, and L.M. Olivares: ISIJ Int., 1990, vol. 30, pp. 48–57.

    Article  Google Scholar 

  64. X. Liu, J. Zhang, W. Du, Q. Zhai, and Q. Li: Ironmak. Steelmak., 2007, vol. 34, pp. 491–500.

    Article  Google Scholar 

  65. C.S. Assuncao, R.P. Tavares, G. Oliveira, and L.C. Pereira: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 366–77.

    Article  Google Scholar 

  66. M.R.R.I. Shamsi and S.K. Ajmani: ISIJ Int., 2007, vol. 47, pp. 433–42.

    Article  CAS  Google Scholar 

  67. H. Yu and M. Zhu: Acta Metall. Sin., 2008, vol. 44, pp. 1465–73.

    CAS  Google Scholar 

  68. Y. Wang, W. Chen, D. Jiang, and L. Zhang: Steel Res. Int., 2020, vol. 91, p. 1900470.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 52374333), the Fundamental Research Funds for the Central Universities (Grant No. N2325010) and LiaoNing Revitalization Talents Program (Grant No. XLYC2203169).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyuan Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, Q., Ni, P., Ersson, M. et al. A Study on Solidification Behavior of a Large Round Bloom Affected by Swirling Flow Submerged Entry Nozzle Combined with Mold Electromagnetic Stirring. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03132-z

Navigation