Simulation of Concurrent Precipitation of Two Strengthening Phases in Magnesium Alloys

  • Chapter
Magnesium Technology 2015

Abstract

The precipitation kinetics and microtructure in Mg-Sn binary and Mg-Al-Sn ternary alloys are simulated using PanPrecipitation coupled with Mg thermodynamic database and a newly established mobility database of the Mg-Al-Sn ternary system. Both Mg2Sn and Mg17Al12 precipitates are considered in this work. The obtained kinetic parameters for these two precipitates can be used in the simulation of both individual and concurrent precipitations of Mg17Al12 and Mg2Sn in Mg-Al-Sn alloys. The simulated microstructure evolution, such as the particle size and number density, are in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.A Luo, “Recent magnesium alloy development for elevated temperature applications”, Int. Mater. Rev., 49(1) (2004) 13–30.

    Article  Google Scholar 

  2. A.A Luo et al., “Solidification microstructure and mechanical properties of cast magnesium-aluminum-tin alloys”, Metall. Mater. Trans A., 43(1) (2012), 360–368.

    Article  Google Scholar 

  3. X.Y. Shi et al., “Microstructure and mechanical properties of Mg-7Al-2Sn alloy processed by super vacuum die-casting”, Metall. Mater. Trans A., 44(10) (2013), 4788–4799.

    Article  Google Scholar 

  4. W. Ke et al., “Investigations in the magnesium-tin system”, Mater. Sci. Forum, 488–489 (2005), 135–138.

    Google Scholar 

  5. C. Zhang et al., “Precipitation simulation of AZ91 alloy”, JOM, 66(3) (2014), 389–396.

    Article  Google Scholar 

  6. W. Cao et al., “PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation”, CALPHAD, 33(2) (2009), 328–342.

    Article  Google Scholar 

  7. PanMagnesium thermodynamic database (Madison, WI: CompuTherm LLC)

    Google Scholar 

  8. N. Saunders and A.P. Modownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier, 1998)

    Google Scholar 

  9. J.O. Andersson and J. Ågren, “Models for numerical treatment of multicomponent diffusion in simple phases”, J. Appl. Phys., 72(4) (1992), 1350–1354.

    Article  Google Scholar 

  10. B. Jönsson, “Assessment of the mobility of carbon in fcc C-Cr- Fe-Ni alloys”, Z.Metallkd., 85(7) (1994), 502–509.

    Google Scholar 

  11. O. Redlich and A.T. Kister, “Algebraic representation of thermodynamic properties and the classification of solution”, Ind. Eng. Chem. Res. 40(2) (1948) 345–349.

    Article  Google Scholar 

  12. R. Kampmann and R. Wagner, “Kinetics of precipitation in metastable binary alloys-theory and application to Cu-1.9 at % Ti and Ni-14 at % Al”, Decomposition of Alloys: the early stages, Proceedings of the 2ndActa-Scripta Metallurgica Conference, ed. P. Haasen et al. (Pergamon Press, 1983), 91–103.

    Google Scholar 

  13. J.E. Morral and G.R. Purdy, “Particle coarsening in binary and multicomponent alloys”, Scripta Metall. Mater, 30(7) (1994), 905–908.

    Article  Google Scholar 

  14. P.G. Shewmon, “Self-diffusion in magnesium single crystals”, Trans. Metall. Soc, AIME, 206 (1956), 918–922.

    Google Scholar 

  15. J. Combronde and G. Brebec, “Anisotropy for self diffusion in magnesium”, Acta Metall, 19(12) (1971), 1393–1399.

    Article  Google Scholar 

  16. S. Brennan et al., “Aluminum impurity diffusion in magnesium”, J. Phase Equilib. Diff., 33(2) (2012), 121–125.

    Article  Google Scholar 

  17. S.K. Das et al, “Anisotropic diffusion behavior of Al in Mg: diffusion couple study using Mg single crystal”, Metall. Mater. Trans A., 44(6) (2013), 2539–2547.

    Article  Google Scholar 

  18. C. Kammerer et al., “Al and Zn impurity diffusion in binary and ternary magnesium solid-solutions,” Magnesium Technology 2014, ed. M. Alderman et al., TMS, 2014, 407–411.

    Google Scholar 

  19. C. Kammerer et al., “Impurity diffusion coefficients of Al and Zn in Mg determined from solid-to-solid diffusion couples”, Magnesium Technology 2014, ed. M. Alderman et al, TMS, 2014, 505–509.

    Google Scholar 

  20. S. Brennan et al., “Interdiffusion in the Mg-Al system and intrinsic diffusion in β-Mg2Al3”, Metall. Mater. Trans. A, 43(11) (2012), 4043–4052.

    Article  Google Scholar 

  21. K.N. Kulkarni and A.A. Luo, “Interdiffusion and phase growth kinetics in magnesium-aluminum binary system”, J. Phase Equilib. Diff., 34(2) (2013), 104–115.

    Article  Google Scholar 

  22. J. Combronde and G. Brebec, “Diffusion of Ag, Cd, In, Sn and Sb in magnesium”, Acta Metall., 20 (1972), 37–44.

    Article  Google Scholar 

  23. Y.W. Cui et al., “Study of diffusion mobility of Al-Zn solid solution”, J. Phase Equilib. Diff., 27(4) (2006), 333–342.

    Google Scholar 

  24. John Askill, Tracer diffusion data for metals, alloys, and simple oxides (New York, NY, Plenum Publishing Corporation, 1970), 19–26.

    Book  Google Scholar 

  25. C. Yu et al., “Ab initio calculation of the properties and pressure induced transition of Sn,” Solid State Commun., 140 (11–12) (2006), 538–543.

    Article  Google Scholar 

  26. C.L. Mendis et al., “Refinement of precipitate distributions in an age-hardenable Mg-Sn alloy through microalloying”, Phil. Mag. Let., 86(7) (2006), 443–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Sun, W., Zhang, C., Klarner, A.D., Cao, W., Luo, A.A. (2015). Simulation of Concurrent Precipitation of Two Strengthening Phases in Magnesium Alloys. In: Manuel, M.V., Singh, A., Alderman, M., Neelameggham, N.R. (eds) Magnesium Technology 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48185-2_54

Download citation

Publish with us

Policies and ethics

Navigation