Log in

Biomass production and salinity response in plants: role of MicroRNAs

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Small non-coding RNAs are one of the major contributors for diverse cellular functions in plants. MicroRNAs (miRNAs) are one such class of small non-coding RNAs playing crucial role in normal plant growth and development as well as under environmental stresses. miRNA modulates the transcripts level by directly binding to the transcript generated from the target gene and mediate either the cleavage of the target mRNA transcript or the inhibitition of translation of the target transcript or inhibition of target gene expression through epigenetic modification. In the current scenario, understanding the link between the diverse miRNAs and their orchestrated functioning for regulation of stress signaling as well as biomass production is a major challenge. In the present review, we have explored the current knowledge about the plant miRNA families and their functional aspects, particularly in the context of salinity stress tolerance and higher biomass production. We conclude that miRNA families such as miR156, 159, 164, 166, 319, 393, 396 and 414 are possibly mediating the cross talk between biomass production and salinity stress response. The present review may improve the current knowledge about the plant miRNAs and thus may help in generating crop plants for marginal lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard, P., Herr, A., Baulcombe, D. C., & Harberd, N. P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development, 131(14), 3357–3365.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal, S., Mohan, M., & Mangrauthia, S. K. (2011). RNAi: Machinery and role in pest and disease management. In V. Bandi, A. K. Shanker, C. Shanker, & M. Mandapaka (Eds.), Crop stress and its management: Perspectives and strategies (pp. 447–469). Netherlands: Springer.

    Google Scholar 

  • Alptekin, B., Langridge, P., & Budak, H. (2017). Abiotic stress miRNomes in the Triticeae. Functional & Integrative Genomics, 17(2–3), 145–170.

    Article  CAS  Google Scholar 

  • Arenas-Huertero, C., Pérez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., et al. (2009). Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Molecular Biology, 70, 385–401.

    Article  CAS  PubMed  Google Scholar 

  • Attia, H., Karray, N., Msilini, N., & Lachaâl, M. (2011). Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. Biologia Plantarum, 55, 159–163.

    Article  CAS  Google Scholar 

  • Aukerman, M. J., & Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 15(11), 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, A., Roychoudhury, A., & Krishnamoorthi, S. (2016). Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants. Plant Biotechnology Reports, 10(4), 185–205.

    Article  Google Scholar 

  • Bazin, J., Khan, G. A., Combier, J. P., Bustos-Sanmamed, P., Debernardi, J. M., Rodriguez, R., et al. (2013). miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. The Plant Journal, 74(6), 920–934.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj, A. R., Joshi, G., Pandey, R., Kukreja, B., Goel, S., Jagannath, A., Kumar, A., Katiyar-Agarwal, S. & Agarwal, M. (2014). A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L.  PLoS One, 9, e92456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Y., & Long, M. (2007). A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnology Letters, 29, 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  • Chuck, G., Meeley, R., Irish, E., Sakai, H., & Hake, S. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 39(12), 1517–1521.

    Article  CAS  PubMed  Google Scholar 

  • D’Ario, M., Griffiths-Jones, S., & Kim, M. (2017). Small RNAs: big impact on plant development. Trends in Plant Science. https://doi.org.10.1016/j.tplants.2017.09.009

    PubMed  Google Scholar 

  • De Paola, D., Cattonaro, F., Pignone, D., & Sonnante, G. (2012). The miRNAome of globe artichoke: Conserved and novel micro RNAs and target analysis. BMC Genomics, 13, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng, P., Wang, L., Cui, L., Feng, K., Liu, F., Du, X., Tong, W., Nie, X., Ji, W. & Weining, S. (2015). Global identification of microRNAs and their targets in barley under salinity stress. PLoS One, 10, e0137990.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., & Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 103(1), 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Djami-Tchatchou, A. T., Sanan-Mishra, N., Ntushelo, K., & Dubery, I. A. (2017). Functional roles of microRNAs in agronomically important plants—Potential as targets for crop improvement and protection. Frontiers in Plant Science, 8, 378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery, J. F., Floyd, S. K., Alvarez, J., Eshed, Y., Hawker, N. P., Izhaki, A., et al. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology, 13(20), 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  • Feng, K., Nie, X., Cui, L., Deng, P., Wang, M., & Song, W. (2017). Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Genes, 8(6):156.

    Article  PubMed Central  Google Scholar 

  • Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J. Y., Matts, J., et al. (2012). Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 10(4), 443–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, P., Bai, X., Yang, L., Lv, D., Pan, X., Li, Y., et al. (2011). osa-MIR393: A salinity-and alkaline stress-related microRNA gene. Molecular Biology Reports, 38, 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Guo, C., Zhang, Y., Zhang, F., Du, X., Gu, J., et al. (2016). Wheat microRNA member tamir444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress. Plant Molecular Biology Reporter, 34(5), 931–946.

    Article  CAS  Google Scholar 

  • Gao, N., Su, Y., Min, J., et al. (2010). Transgenic tomato overexpressing athmiR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant and Soil, 334, 123–136.

    Article  CAS  Google Scholar 

  • Guan, X., Pang, M., Nah, G., Shi, X., Ye, W., Stelly, D. M., et al. (2014). MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 5, 3050.

    Article  PubMed  Google Scholar 

  • Gupta, O. P., Meena, N. L., Sharma, I., & Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 41, 4623–4629.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P., Nutan, K. K., Singla-Pareek, S. L., & Pareek, A. (2017). Abiotic stresses cause differential regulation of alternative splice forms of gata transcription factor in rice. Frontiers in Plant Science, 8, 1944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42(6), 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14, 787–799.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, R., Anwar, K., Das, P., Singla-Pareek, S. L., & Pareek, A. (2017a). Overview of methods for assessing salinity and drought tolerance of transgenic wheat lines. Wheat biotechnology (pp. 83–95). New York: Humana Press.

    Chapter  Google Scholar 

  • Joshi, R., Sahoo, K. K., Tripathi, A. K., Kumar, R., Gupta, B. K., Pareek, A., et al. (2017b). Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell & Environment. https://doi.org/10.1111/pce.12947.

    Google Scholar 

  • Jung, H. J., & Kang, H. (2007). Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiology and Biochemistry, 45, 805–811.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. L., Kwak, K. J., Jung, H. J., Lee, H. J., & Kang, H. (2010a). MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant and Cell Physiology, 51, 1079–1083.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. Y., Lee, H. J., Jung, H. J., Maruyama, K., Suzuki, N., & Kang, H. (2010b). Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta, 232, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  • Kong, W. W., & Yang, Z. M. (2010). Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiology and Biochemistry, 48, 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Koroban, N. V., Kudryavtseva, A. V., Krasnov, G. S., Sadritdinova, A. F., Fedorova, M. S., Snezhkina, A. V., et al. (2016). The role of microRNA in abiotic stress response in plants. Molecular Biology, 50(3), 337–343.

    Article  CAS  Google Scholar 

  • Kumari, S., nee Sabharwal, V. P., Kushwaha, H. R., Sopory, S. K., Singla-Pareek, S. L., & Pareek, A. (2009). Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Functional & Integrative Genomics, 9(1), 109.

    Article  CAS  Google Scholar 

  • Laufs, P., Peaucelle, A., Morin, H., & Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131, 4311–4322.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. S., Gudimella, R., Wong, G. R., Tammi, M. T., Khalid, N., & Harikrishna, J. A. (2015). Transcripts and microRNAs responding to salt stress in Musa acuminata Colla (AAA Group) cv. Berangan roots. PLoS One, 10, e0127526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F., Fan, G., Lu, C., **ao, G., Zou, C., Kohel, R. J., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 33, 524–530.

    Article  PubMed  Google Scholar 

  • Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., et al. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 46, 567–572.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Li, H., Zhang, Y. X., & Liu, J. Y. (2011). Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Research, 39, 2821–2833.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Wang, T., Zhang, Y., & Li, Y. (2016). Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 67, 75–194.

    Google Scholar 

  • Li, C., & Zhang, B. (2016). MicroRNAs in control of plant development. Journal of Cellular Physiology, 231(2), 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Guo, S., Xu, Y., Li, C., Zhang, Z., Zhang, D., et al. (2014a). OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiology, 165(1), 160–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H. H., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14(5), 836–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, N., Tu, L., Tang, W., Gao, W., Lindsey, K., & Zhang, X. (2014b). Small RNA and degradome profiling reveals a role for miRNAs and their targets in the develo** fibers of Gossypium barbadense. The Plant Journal, 80, 331–344.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Yao, X., Pi, L., Wang, H., Cui, X., & Huang, H. (2009). The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. The Plant Journal, 58, 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., Feng, Z., Bian, L., **e, H., & Liang, J. (2011). miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Functional Plant Biology, 38(1), 44–53.

    Article  CAS  Google Scholar 

  • Lu, S., Sun, Y. H., & Chiang, V. L. (2008). Stress-responsive microRNAs in populus. The Plant Journal, 55, 131–151.

    Article  CAS  PubMed  Google Scholar 

  • Lv, S., Nie, X., Wang, L., et al. (2012). Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. International Journal of Molecular Sciences, 13, 2973–2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, X., **n, Z., Wang, Z., et al. (2015). Identification and comparative analysis of differentially expressedmiRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biology, 15, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangrauthia, S. K., Agarwal, S., Sailaja, B., Madhav, M. S., & Voleti, S. R. (2013). MicroRNAs and their role in salt stress response in plants. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Salt stress in plants (pp. 15–46). New York: Springer.

    Chapter  Google Scholar 

  • Mittal, D., Sharma, N., Sharma, V., Sopory, S. K., & Sanan-Mishra, N. (2016). Role of microRNAs in rice plant under salt stress. Annals of Applied Biology, 168(1), 2–18.

    Article  CAS  Google Scholar 

  • Miura, K., Ikeda, M., Matsubara, A., Song, X. J., Ito, M., Asano, K., et al. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42(6), 545–549.

    Article  CAS  PubMed  Google Scholar 

  • Mondal, T. K., & Ganie, S. A. (2014). Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene, 535, 204–209.

    Article  CAS  PubMed  Google Scholar 

  • Mutum, R. D., Balyan, S. C., Kansal, S., Agarwal, P., Kumar, S., Kumar, M., et al. (2013). Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. The FEBS Journal, 280, 1717–1730.

    Article  CAS  PubMed  Google Scholar 

  • Nutan, K. K., Kushwaha, H. R., Singla-Pareek, S. L., & Pareek, A. (2017). Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Functional & Integrative Genomics, 17, 69–83.

    Article  CAS  Google Scholar 

  • Ori, N., Cohen, A. R., Etzioni, A., Brand, A., Yanai, O., Shleizer, S., et al. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39, 787–791.

    Article  CAS  PubMed  Google Scholar 

  • Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., et al. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Pang, M., Woodward, A. W., Agarwal, V., Guan, X., Ha, M., Ramachandran, V., et al. (2009). Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biology, 10, R122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieczynski, M., Marczewski, W., Hennig, J., et al. (2013). Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal, 11, 459–469.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R. E., Mecchia, M. A., Debernardi, J. M., Schommer, C., Weigel, D., & Palatnik, J. F. (2010). Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 137(1), 103–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schommer, C., Bresso, E. G., Spinelli, S. V., & Palatnik, J. F. (2012). Role of microRNA miR319 in plant development. In MicroRNAs in plant development and stress responses (pp. 29–47). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8(4), 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Sharan, A., Soni, P., Nongpiur, R. C., Singla-Pareek, S. L., & Pareek, A. (2017). Map** the ‘Two-component system’ network in rice. Scientific Reports, 7(1), 9287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, N., Tripathi, A., & Sanan-Mishra, N. (2015). Profiling the expression domains of a rice-specific microRNA under stress. Frontiers in Plant Science, 6, 333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., & Wani, S. H. (2016). MicroRNAs as potential targets for abiotic stress tolerance in plants. Frontiers Plant Science, 7, 817.

    Article  Google Scholar 

  • Soda, N., Sharan, A., Gupta, B. K., Singla-Pareek, S. L., & Pareek, A. (2016). Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Scientific Reports, 6, 34762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X., Xu, L., Wang, Y., et al. (2015). Identification of novel and salt responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics, 16, 1–16.

    Article  Google Scholar 

  • Tian, H., Jia, Y., Niu, T., Yu, Q., & Ding, Z. (2014). The key players of the primary root growth and development also function in lateral roots in Arabidopsis. Plant Cell Reports, 33, 745–753.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Gu, X., Xu, D., Wang, W., Wang, H., Zeng, M., et al. (2011). MiR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. Journal of Experimental Botany, 62, 761–773.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. W., Schwab, R., Czech, B., Mica, E., & Weigel, D. (2008). Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell, 20(5), 1231–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Sun, F., Cao, H., et al. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One. https://doi.org/10.1371/journal.pone.0048445.

    Google Scholar 

  • Wang, M., Sun, R., Li, C., Wang, Q., & Zhang, B. (2017). MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development. Scientific Reports, 7, 44454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Sun, Y. F., Song, N., et al. (2014). MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry, 80, 90–96.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J. Z., Tirajoh, A., Effendy, J., & Plant, A. L. (2000). Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Science, 159, 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Wollmann, H., Mica, E., Todesco, M., Long, J. A., & Weigel, D. (2010). On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development, 137, 3633–3642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **a, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., et al. (2012). OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 7(1), e30039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **e, F., Frazier, T. P., & Zhang, B. (2010). Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta, 232(2), 417–434.

    Article  CAS  PubMed  Google Scholar 

  • **e, F., Jones, D. C., Wang, Q., Sun, R., & Zhang, B. (2015). Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnology Journal, 13, 355–369.

    Article  CAS  PubMed  Google Scholar 

  • **e, K. B., Shen, J. Q., Hou, X., Yao, J. L., Li, X. H., **ao, J. H., et al. (2012). Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiology, 158, 1382–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D. Q., Huang, J., & Guo, S. Q. (2008). Overexpression of a TFIIIA-type zinc fi nger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters, 582, 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  • Yaish, M. W., Sunkar, R., Zheng, Y., Ji, B., Al-Yahyai, R., & Farooq, S. A. (2015). A genome wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.). Frontiers in Plant Science, 6, 946.

    PubMed  PubMed Central  Google Scholar 

  • Yan, Y., Wang, H., Hamera, S., Chen, X., & Fang, R. (2014). miR444a has multiple functions in the rice nitrate-signaling pathway. The Plant Journal, 78(1), 44–55.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Li, D., Mao, D., Liu, X., Ji, C., Li, X., et al. (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell & Environment, 36, 2207–2218.

    Article  CAS  Google Scholar 

  • Yang, R., Zeng, Y., Yi, X., Zhao, L., & Zhang, Y. (2015). Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica. Plant Biotechnology Journal, 13, 395–408.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 66(7), 1749–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., & Wang, Q. (2015). MicroRNA-based biotechnology for plant improvement. Journal of Cellular Physiology, 230(1), 1–15.

    Article  PubMed  Google Scholar 

  • Zhang, B. & Wang, Q. (2016). MicroRNA, a new target for engineering new crop cultivars. Bioengineered, 7(1), 7–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. C., Yu, Y., Wang, C. Y., Li, Z. Y., Liu, Q., Xu, J., et al. (2013a). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 31(9), 848–852.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Zhao, C., Li, M., Sun, W., Liu, Y., **a, H., et al. (2013b). Genome wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC Plant Biology, 13, 180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., et al. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology, 10, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Honda, M., Zhu, H., Zhang, Z., Guo, X., Li, T., et al. (2015). Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Reports, 10, 1819–1827.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., et al. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic cree** bentgrass. Plant Physiology, 161(3), 1375–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome-wide identi fi cation and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157–4168.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., & Luo, H. (2014). Role of microRNA319 in cree** bentgrass salinity and drought stress response. Plant Signaling & Behavior, 9, e28700.

    Article  Google Scholar 

  • Zhu, Q. H., & Helliwell, C. A. (2010). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62, 487–495.

    Article  PubMed  Google Scholar 

  • Zhuang, Y., Zhou, X. H., & Liu, J. (2014). Conserved miRNAs and their response to salt stress in wild egg plant solanum linnaeanum roots. International Journal of Molecular Sciences, 15, 839–849.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RJ would like to acknowledge Dr D S Kothari Postdoctoral Fellowship from UGC and PG would like to acknowledge the Senior Research fellowship from CSIR respectively. AP and SLS-P are supported by funding from the Indo-US Science and Technology Forum (IUSSTF) for Indo-US Advanced Bioenergy Consortium (IUABC). Research in the lab of AP is also supported from funds received from International Atomic Energy Agency (Vienna), UGC-RNW and UPE-II, JNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Gupta, P., Singla-Pareek, S.L. et al. Biomass production and salinity response in plants: role of MicroRNAs. Ind J Plant Physiol. 22, 448–457 (2017). https://doi.org/10.1007/s40502-017-0327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0327-7

Keywords

Navigation