Log in

The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The advancements achieved in additive manufacturing (AM) have substantially transformed the design process of functional components. The change simplifies the fabrication of triply periodic minimal surface (TPMS) structures, whose unique geometric characteristics have garnered interest from numerous industries, including automotive, architecture, aerospace, and biomedical engineering. However, there is a scarcity of research in the literature about the investigation of the tensile mechanical properties of build orientation during the AM process of polymer-based TPMS. The objective of this study was to investigate the influence of three different types of TPMS structure and build orientations on the mechanical qualities of test specimens fabricated using masked stereolithography (MSLA) and a commercially accessible gray resin. Furthermore, the objective of the research was to determine the optimal TPMS pattern type and construct orientation in order to improve both elongation and ultimate tensile strength (UTS). A dog bone-shaped specimen was used for an experimental evaluation of their tensile properties. The test region was occupied by three different TPMS structures, namely the Gyroid (G), Schwarz Primitive (P), and Schwarz Diamond (D). The results showed that across all three building orientations, the D-shaped component produced the highest UTS, and the P-shaped component produced the largest elongation. The analysis of variance (ANOVA) results for UTS revealed that shape significantly influenced UTS by 83.11%, outweighing the 7.42% impact of construct orientation on UTS. Similarly, the ANOVA for elongation at break shows that build orientation (17.84%) had a substantially lower impact than shape (75.08%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hassan IM, Enab TA, Fouda N, Eldesouky I (2023) Design, fabrication, and evaluation of functionally graded triply periodic minimal surface structures fabricated by 3D printing. J Braz Soc Mech Sci Eng 45:66. https://doi.org/10.1007/s40430-022-03972-3

    Article  Google Scholar 

  2. Majeed M, Khan HM, Wheatley G, Situ R (2022) Influence of post-processing on additively manufactured lattice structures. J Braz Soc Mech Sci Eng 44:389. https://doi.org/10.1007/s40430-022-03703-8

    Article  Google Scholar 

  3. Kim WR, Bang GB, Kwon O et al (2020) Fabrication of porous pure titanium via selective laser melting under low-energy-density process conditions. Mater Des 195:109035. https://doi.org/10.1016/j.matdes.2020.109035

    Article  CAS  Google Scholar 

  4. du Plessis A, Razavi N, Benedetti M et al (2022) Properties and applications of additively manufactured metallic cellular materials: a review. Prog Mater Sci 125:100918. https://doi.org/10.1016/j.pmatsci.2021.100918

    Article  CAS  Google Scholar 

  5. ASTM ISO 52900: Additive manufacturing—General principles—Fundamentals and vocabulary. Standard (2021), American Society for Testing Materials, West Conshohocken

  6. Bhosale V, Gaikwad P, Dhere S et al (2022) Analysis of process parameters of 3D printing for surface finish, printing time and tensile strength. Mater Today Proc 59:841–846. https://doi.org/10.1016/j.matpr.2022.01.210

    Article  CAS  Google Scholar 

  7. Leben LM, Schwartz JJ, Boydston AJ et al (2018) Optimized heterogeneous plates with holes using 3D printing via vat photo-polymerization. Addit Manuf 24:210–216. https://doi.org/10.1016/j.addma.2018.09.018

    Article  CAS  Google Scholar 

  8. Pagac M, Hajnys J, Ma Q-P et al (2021) A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers 13:598. https://doi.org/10.3390/polym13040598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ligon SC, Liska R, Stampfl J et al (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Upcraft S, Fletcher R (2003) The rapid prototy** technologies. Assem Autom 23:318–330. https://doi.org/10.1108/01445150310698634

    Article  Google Scholar 

  11. Phillips BT, Allder J, Bolan G et al (2020) Additive manufacturing aboard a moving vessel at sea using passively stabilized stereolithography (SLA) 3D printing. Addit Manuf 31:100969. https://doi.org/10.1016/j.addma.2019.100969

    Article  CAS  Google Scholar 

  12. Wang S, Ma Y, Deng Z et al (2020) Implementation of an elastoplastic constitutive model for 3D-printed materials fabricated by stereolithography. Addit Manuf 33:101104. https://doi.org/10.1016/j.addma.2020.101104

    Article  Google Scholar 

  13. Saini J, Dowling L, Kennedy J, Trimble D (2020) Investigations of the mechanical properties on different print orientations in SLA 3D printed resin. Proc Inst Mech Eng C J Mech Eng Sci 234:2279–2293. https://doi.org/10.1177/0954406220904106

    Article  Google Scholar 

  14. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  15. Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A Math Phys Eng Sci 466:2495–2516. https://doi.org/10.1098/rspa.2010.0215

    Article  CAS  ADS  Google Scholar 

  16. Bledzki AK, Faruk O (2006) Microcellular injection molded wood fiber-PP composites: part I—effect of chemical foaming agent content on cell morphology and physico-mechanical properties. J Cell Plast 42:63–76. https://doi.org/10.1177/0021955X06060945

    Article  CAS  Google Scholar 

  17. Taki K, Yanagimoto T, Funami E et al (2004) Visual observation of CO2 foaming of polypropylene-clay nanocomposites. Polym Eng Sci 44:1004–1011. https://doi.org/10.1002/pen.20093

    Article  CAS  Google Scholar 

  18. Abueidda DW, Bakir M, Abu Al-Rub RK et al (2017) Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater Des 122:255–267. https://doi.org/10.1016/j.matdes.2017.03.018

    Article  CAS  Google Scholar 

  19. Maskery I, Sturm L, Aremu AO et al (2018) Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer 152:62–71. https://doi.org/10.1016/j.polymer.2017.11.049

    Article  CAS  Google Scholar 

  20. Kapfer SC, Hyde ST, Mecke K et al (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32:6875–6882. https://doi.org/10.1016/j.biomaterials.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  21. Abueidda DW, Elhebeary M, Shiang (Andrew) C-S et al (2019) Mechanical properties of 3D printed polymeric Gyroid cellular structures: experimental and finite element study. Mater Des 165:107597. https://doi.org/10.1016/j.matdes.2019.107597

    Article  CAS  Google Scholar 

  22. Abou-Ali AM, Al-Ketan O, Lee D-W et al (2020) Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Mater Des 196:109100. https://doi.org/10.1016/j.matdes.2020.109100

    Article  CAS  Google Scholar 

  23. Temiz A, Yaşar M, Koç E (2022) Fabrication of open-pore biodegradable magnesium alloy scaffold via infiltration technique. Int Metalcast 16:317–328. https://doi.org/10.1007/s40962-021-00604-9

    Article  CAS  Google Scholar 

  24. Dalaq AS, Abueidda DW, Abu Al-Rub RK, Jasiuk IM (2016) Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. Int J Solids Struct 83:169–182. https://doi.org/10.1016/j.ijsolstr.2016.01.011

    Article  Google Scholar 

  25. Yoo D-J (2014) Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios. Int J Precis Eng Manuf 15:1657–1666. https://doi.org/10.1007/s12541-014-0516-5

    Article  Google Scholar 

  26. Mulhi A, Dehgahi S, Waghmare P, Qureshi A (2023) Dimensional assessment of uniformly periodic porosity primitive TPMS lattices using additive manufacturing laser powder bed fusion technique. Int J Adv Manuf Technol 124:2127–2148. https://doi.org/10.1007/s00170-022-10578-5

    Article  Google Scholar 

  27. Temiz A, Alshemary AZ, Akar N, Yaşar M (2023) Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis. Int Metalcast 17:1871–1882. https://doi.org/10.1007/s40962-022-00903-9

    Article  CAS  Google Scholar 

  28. Peng C, Fox K, Qian M et al (2021) 3D printed sandwich beams with bioinspired cores: mechanical performance and modelling. Thin-Walled Struct 161:107471. https://doi.org/10.1016/j.tws.2021.107471

    Article  Google Scholar 

  29. Liang Y, Zhou W, Liu Y et al (2021) Energy absorption and deformation behavior of 3D printed triply periodic minimal surface stainless steel cellular structures under compression. Steel Res Int 92:2000411. https://doi.org/10.1002/srin.202000411

    Article  CAS  Google Scholar 

  30. Temiz A (2023) The effects of process parameters on tensile characteristics and printing time for masked stereolithography components, analyzed using the response surface method. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08617-7

    Article  Google Scholar 

  31. ASTM D638—14: standard test method for tensile properties of plastics. Standard (2015), American Society for Testing Materials, West Conshohocken

  32. Uslu S, Aydın M (2020) Effect of operating parameters on performance and emissions of a diesel engine fueled with ternary blends of palm oil biodiesel/diethyl ether/diesel by Taguchi method. Fuel 275:117978. https://doi.org/10.1016/j.fuel.2020.117978

    Article  CAS  Google Scholar 

  33. Demir S, Yüksel C (2022) Evaluation of effect and optimizing of process parameters for fused deposition modeling parts on tensile properties via Taguchi method. Rapid Prototyp J 29:720–730. https://doi.org/10.1108/RPJ-06-2022-0201

    Article  Google Scholar 

  34. Solyaev YO, Ustenko AD, Babaytsev AV, Dobryanskiy VN (2023) Improved mechanical performance of quasi-cubic lattice metamaterials with asymmetric joints. Sci Rep 13:14846. https://doi.org/10.1038/s41598-023-41614-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Komjaty A, Wisznovszky (Muncut) ES, Culda LI (2021) Study on the influence of technological parameters on 3D printing with sla technology. MATEC Web Conf 343:01003.https://doi.org/10.1051/matecconf/202134301003

  36. Rosace G, Palucci Rosa R, Arrigo R, Malucelli G (2021) Photosensitive acrylates containing bio-based epoxy-acrylate soybean oil for 3D printing application. J Appl Polym Sci 138:51292. https://doi.org/10.1002/app.51292

    Article  CAS  Google Scholar 

  37. Soto-Montero J, de Castro EF, de Romano BC et al (2022) Color alterations, flexural strength, and microhardness of 3D printed resins for fixed provisional restoration using different post-curing times. Dent Mater 38:1271–1282. https://doi.org/10.1016/j.dental.2022.06.023

    Article  CAS  PubMed  Google Scholar 

  38. Kiyotake EA, Thomas EE, Homburg HB et al (2022) Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting. J Biomed Mater Res Part A 110:365–382. https://doi.org/10.1002/jbm.a.37294

    Article  CAS  Google Scholar 

  39. Mishra AK, Chavan H, Kumar A (2021) Effect of material variation on the uniaxial compression behavior of FDM manufactured polymeric TPMS lattice materials. Mater Today Proc 46:7752–7759. https://doi.org/10.1016/j.matpr.2021.02.276

    Article  CAS  Google Scholar 

  40. Wittbrodt B, Pearce JM (2015) The effects of PLA color on material properties of 3-D printed components. Addit Manuf 8:110–116. https://doi.org/10.1016/j.addma.2015.09.006

    Article  CAS  Google Scholar 

  41. Kazemi M, Rahimi AR (2015) Supports effect on tensile strength of the stereolithography parts. Rapid Prototyp J 21:79–88. https://doi.org/10.1108/RPJ-12-2012-0118

    Article  Google Scholar 

  42. Simsek S, Uslu S (2020) Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM). Fuel 270:117496. https://doi.org/10.1016/j.fuel.2020.117496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Karabuk University Scientific Research Projects Coordination Unit. Project Number: KBÜBAP-23-ABP-069. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahim Temiz.

Additional information

Technical Editor: Zilda de Castro Silveira.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiz, A. The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures. J Braz. Soc. Mech. Sci. Eng. 46, 121 (2024). https://doi.org/10.1007/s40430-024-04709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04709-0

Keywords

Navigation