Log in

Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China

  • Research Article
  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Frequent periods of drought conditions are known to limit plant performance, primary production, and ecosystem stability in arid and semi-arid desert steppe environments. Plants often avoid competition by shifting their water use seasonally, which affects the water-use patterns of dominant species as well as the composition and structure of plant communities. However, the water-use strategies of dominant herbaceous species, which grow under natural field conditions in the desert steppe region of Ningxia Hui Autonomous Region, China, are poorly known. Here, we explored the possible sources of water uptake and water-use efficiency (WUE) of three dominant herbaceous plant species (Stipa breviflora, Agropyron mongolicum, and Glycyrrhiza uralensis) in a native desert steppe in the semi-arid area of Ningxia through an analysis of multiple parameters, including (1) the stable isotopic oxygen and hydrogen (δ18O and δ2H) compositions of precipitation, soil water, and stem water, (2) the carbon isotope (13C) composition of leaves, and (3) the soil water contents, based on field sampling across varying water conditions from June to September, 2017. Frequent small precipitation events replenished shallow soil water, whereas large events only percolated down to the deep soil layers. Changes in soil water availability affected the water-use patterns of plants. Generally, during light precipitation periods, the deep root system of G. uralensis accessed deeper (>80 cm) soil water, whereas S. breviflora and A. mongolicum, which only have shallow roots, primarily absorbed water from the shallow and middle soil layers. As precipitation increased, all three plant species primarily obtained water from the shallow soil layers. Variation in soil water uptake between the dry and wet seasons enabled plants to make better use of existing satoil water. In addition, the δ13C values of G. uralensis and S. breviflora were higher than those of A. mongolicum. The δ13C values of the three plant species were significantly negatively correlated with soil water content. Therefore, G. uralensis and S. breviflora maintained a higher WUE through their conservative and water-saving strategies across the entire growing season. In contrast, A. mongolicum, with a relatively low WUE in the wet season but a high WUE in the dry season, exhibited a more flexible water-use strategy. The different water-use strategies of these dominant plant species demonstrated the mechanisms by which plant communities can respond to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altieri S, Mereu S, Cherubini P, et al. 2015. Tree-ring carbon and oxygen isotopes indicate different water use strategies in three Mediterranean shrubs at Capo Caccia. Sardinia, Italy. Trees Structure and Function, 5: 1593–1603.

    Article  Google Scholar 

  • Antunes C, Díaz-Barradas M C, Zunzunegui M, et al. 2018. Water source partitioning among plant functional types in a semi-arid dune ecosystem. Journal of Vegetation Science, 29: 671–683.

    Article  Google Scholar 

  • Araya Y N, Silvertown J, Gowing D J, et al. 2011. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist, 189: 253–258.

    Article  Google Scholar 

  • Auerswald K, Landinger C, Wittmer M, et al. 2010. 13Carbon allocated to the leaf growth zone of Poa pratensis reflects soil water and vapor pressure deficit. In: Schnyder H, Isselstein J, Taube F, et al. Grassland in a Changing World. Gottingen: Universität Göttingen Press, 857–859.

    Google Scholar 

  • Bai Y F, Han X G, Wu J G, et al. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431: 181–184.

    Article  Google Scholar 

  • Bian Y Y, Song N P, Wang X, et al. 2015. Soil water deficit under different land-use type in desert steppe. Journal of Soil and Water Conservation, 29(1): 201–206, 213. (in Chinese)

    Google Scholar 

  • Bowen G J, Putnam A, Brooks J R, et al. 2018. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187: 1025–1039.

    Article  Google Scholar 

  • Burgess S S O, Adams M A, Turner N C, et al. 2000. Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees. Agricultural Water Management, 3: 229–241.

    Article  Google Scholar 

  • Chen G, Auerswald K, Schnyder H. 2016. 2H and 18O depletion of water close to organic surfaces. Biogeosciences, 13: 3175–3186.

    Article  Google Scholar 

  • Chen J, Chen L, Song N P, et al. 2018. Soil in filtration characteristics of different soils types in desert steppe. Journal of Soil and Water Conservation, 32(4): 18–23. (in Chinese)

    Google Scholar 

  • Cheng X R, Huang M B, Shao M G, et al. 2008. Root distribution and soil water dynamics of Medicago sativa L. and Stipa breviflora Griseb. Acta Prataculturae Sinica, 2: 170–175. (in Chinese)

    Google Scholar 

  • Craig H. 1961. Isotopic variations in meteoric waters. Science, 3465: 1702–1703.

    Article  Google Scholar 

  • Dai Y, Zheng X J, Tang L S, et al. 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 389(1–2): 73–87.

    Article  Google Scholar 

  • Dawson T E, Mambelli S, Plamboeck A H, et al. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33(1): 507–559.

    Article  Google Scholar 

  • Deng W P, Zhang J, Zhang Z J, et al. 2017. Stable hydrogen and oxygen isotope compositions in soil-plant-atmosphere continuum. SPAC in rocky mountain area of Bei**g, China. Chinese Journal of Applied Ecology, 7: 2171–2178. (in Chinese)

    Google Scholar 

  • Ehleringer J R, Dawson T E. 1992. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell and Environment, 15(9): 1073–1082.

    Article  Google Scholar 

  • Ellsworth P Z, Williams D G. 2007. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291: 93–107.

    Article  Google Scholar 

  • Ellsworth P Z, Sternberg L S L. 2015. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology, 8(4): 538–551.

    Article  Google Scholar 

  • Herczeg A L, Leaney F W. 2011. Review: Environmental tracers in arid-zone hydrology. Hydrogeology Journal, 19(1): 17–29.

    Article  Google Scholar 

  • Hirl R T, Schnyder H, Ostler U, et al. 2019. The 18O ecohydrology of a grassland ecosystem-predictions and observations. Hydrology and Earth System Sciences Discussions, 23: 2581–2600.

    Article  Google Scholar 

  • Horton J L, Hart S C, Kolb T E. 2003. Physiological condition and water source use of Sonoran Desert riparian trees at the Bill Williams River, Arizona, USA. Isotopes in Environmental and Health Studies, 39(1): 69–82.

    Article  Google Scholar 

  • Hu H Y, Li H X, Ni B, et al. 2019. Characteristic of typical vegetation community and water use efficiency of dominant plants in desert steppe of Ningxia. Journal of Zhejiang University (Agriculture & Life Science), 45(4): 460–471. (in Chinese)

    Google Scholar 

  • Huang L, Zhang Z S. 2015. Stable isotopic analysis on water utilization of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. Water, 7(3): 1030–1045.

    Article  Google Scholar 

  • Moreno-Gutiérrez C, Dawson T E, Nicolás E, et al. 2012. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196(2): 489–496.

    Article  Google Scholar 

  • Nie Y P, Chen H S, Wang K L, et al. 2014. Seasonal variations in leaf δ13C values: implications for different water-use strategies among species growing on continuous dolomite outcrops in subtropical China. Acta Physiology Plant, 36: 2571–2579.

    Article  Google Scholar 

  • Oerter E J, Siebert G, Bowling D R, et al. 2019. Soil water vapour isotopes identify missing water source for streamside trees. Ecohydrology 12: e2083, doi: https://doi.org/10.1002/eco.2083.

    Article  Google Scholar 

  • Philips D L, Gregg J W. 2003. Source partitioning using stable isotopes: co** with too many sources. Oecologia, 136: 261–269.

    Article  Google Scholar 

  • Querejeta J I, Estrada-Medina H, Allen M F, et al. 2007. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia, 152: 26–36.

    Article  Google Scholar 

  • Song N P, Yang M X, Wang L, et al. 2014. Monthly variation in soil moisture under Caragana intermedia stands grown in desert steppe. Chinese Journal of Ecology, 33(10): 2618–2624. (in Chinese)

    Google Scholar 

  • Tanaka-Oda A, Endo I, Ohte N, et al. 2018. A water acquisition strategy may regulate the biomass and distribution of winter forage species in cold Asian rangeland. Ecosphere, 9(12): e02511, doi: https://doi.org/10.1002/ecs2.2511.

    Article  Google Scholar 

  • Wang X, Hao Z, Ye J, et al. 2008. Spatial pattern of diversity in an old growth temperate forest in Northeastern China. Acta Oecologica, 33(3): 345–354.

    Article  Google Scholar 

  • Werner C, Schnyder H, Cuntz M, et al. 2012. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences, 9(8): 3083–3111.

    Article  Google Scholar 

  • Wittmer M H O M, Auerswald K, Tungalag R, et al. 2008. Carbon isotope discrimination of C3 vegetation in Central Asian grassland as related to long-term and short-term precipitation patterns. Biogeosciences, 5: 913–924.

    Article  Google Scholar 

  • Wu H W, Li X Y, Li J, et al. 2016. Differential soil moisture pulse uptake by coexisting plants in an alpine Achnatherum splendens grassland community. Environmental Earth Sciences 75: 914, doi: https://doi.org/10.1007/s12665-016-5694-2.

    Article  Google Scholar 

  • Wu Y, Zhou H, Zheng X J, et al. 2014. Seasonal changes in the water use strategies of three co-occurring desert shrubs. Hydrological Processes, 28(26): 6265–6275.

    Article  Google Scholar 

  • Yang H, Auerswald K, Bai Y F, et al. 2011. Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China. Plant and Soil, 340: 303–313.

    Article  Google Scholar 

  • Zhao P P, Shao W S, ** C Q, et al. 2017. Effects of enclosure on biomass allocation characteristics of Agropyron mongolicum population in desert steppe. Ecology and Environmental Sciences, 26(12): 2024–2029. (in Chinese)

    Google Scholar 

  • Zhao Y N, Zhou Y R, Wang H M. 2018. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinskii) in desert grassland of the eastern Ningxia, China. Chinese Journal of Applied Ecology, 29(11): 3577–3586. (in Chinese)

    Google Scholar 

  • Zhu L, Zhang H L, Gao X, et al. 2016. Seasonal patterns in water uptake for Medicago sativa grown along an elevation gradient with shallow groundwater table in Yanchi county of Ningxia, Northwest China. Journal of Arid Land, 8(6): 921–934.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Open Project Program of the Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwestern China/Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education (2017KF004) and the Ningxia Natural Science Foundation of Ningxia Hui Autonomous Region, China (2018AAC03002). We would like to thank Professor Cory MATTHEW from Massey University for his helpful suggestions and Dr. WANG **ng and Dr. WANG Lei from the Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwestern China/Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education for their assistance with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhong **e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhu, L., Li, H. et al. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China. J. Arid Land 13, 109–122 (2021). https://doi.org/10.1007/s40333-021-0051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-021-0051-z

Keywords

Navigation