Log in

Review: Environmental tracers in arid-zone hydrology

Revue: Traceurs environnementaux en hydrologie des zones arides

Revisión: Trazadores ambientales en la hidrología de zonas áridas

综述: 干旱区水文学中的环境示踪剂

Revisão: Traçadores ambientais em hidrologia de zonas áridas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Application of environmental tracers to arid-zone hydrology over the past several decades is reviewed, with particular reference to the Australian continent. Some notable successes in the application of stable and radio-isotopes include identifying arid-zone groundwater as palaeowaters, understanding the importance of episodicity and of large flood events to recharge, and delineating sources of water to vegetation. Estimating the rates of recharge and discharge have relied to a large extent on chloride and tritium profiles in the unsaturated zone, while radiocarbon and chlorine-36 are used to estimate horizontal flow rates. A number of new research opportunities are suggested. Improved understanding of processes that modify isotopic signatures at the interface zones such as the upper 5 m of the soil zone, the capillary zone, and the discharge zone, are needed to better quantify water fluxes across these zones. Furthermore, linkages between the atmosphere-soil-water-vegetation continuum although qualitatively understood, elude quantitative transfer to a scale commensurate with basin-scale groundwater management. The new generation of improved and more robust stable isotope and radiometric dating techniques, will be invaluable in advancing the science and its application to better management of meagre water resources in dry parts of the world.

Résumé

L’application de traceurs environnementaux à l’hydrologie des zones arides au cours des dernières décades est passée en revue, avec une attention particulière portée au continent australien. Parmi les succès notables de l’application des isotopes stables et des radio-isotopes figurent la caractérisation d’eaux souterraines de zones arides comme eaux fossiles, la compréhension de l’impact de la périodicité et de l’amplitude des événements pluvieux sur la recharge, et le marquage de l’eau par la végétation. L’estimation des taux de recharge et de décharge s’appuie dans une large mesure sur des profils de chlorure et de tritium dans la zone non saturée, tandis que le carbone radioactif et le chlore-36 sont utilisés pour quantifier les flux horizontaux. De nouvelles opportunités de recherche sont proposées. Une meilleure compréhension des processus qui affectent les signatures isotopiques à l’interface de zones telles les 5 m d’horizon supérieur du sol, la zone capillaire et la zone productive, est nécessaire pour mieux quantifier les flux à travers ces zones. D’autre part, les relations dans le continuum atmosphère-sol-eau-végétation, bien que comprises d’un point de vue qualitatif, n’ont pas d’implication quantitative quant à la gestion de l’aquifère souterrain. La nouvelle génération de techniques améliorées et plus fiables de datation radiométrique et par isotopes stables, sera inestimable pour l’avancement de la science et son application à une meilleure gestion des maigres ressources en eau des zones arides du monde.

Resumen

Se revisa la aplicación de trazadores ambientales a la hidrología de zonas áridas a través de varias décadas pasadas, con particular referencia al continente australiano. Algunos de los éxitos notables en la aplicación de isótopos estables y radioisótopos incluyen la identificación del agua subterránea en zonas áridas como paleoaguas, entendiendo la importancia episódica y de eventos de grandes inundación en la recarga, y en la delineación de fuentes de agua para la vegetación. La estimación de los ritmos de recarga y descarga se han basado en gran medida en perfiles de cloruro y tritio en la zona no saturada, mientras radiocarbono y cloro 36 son usados para estimar los ritmos de flujo horizontal. Se sugiere un conjunto de de nuevas oportunidades de investigación. Se necesita una comprensión mejorada de los procesos que modifican las señales isotópicas en las zonas de interfases tales como los 5 m superiores de la zona de suelo, la zona capilar, y la zona de descarga, para cuantificar mejor los flujos de agua a través de estas zonas. Además, aunque cualitativamente entendidas, los vínculos entre el continuo atmósfera, suelo, agua y vegetación, eluden la transferencia cuantitativa en escala conmensurable con el manejo de agua subterránea en escala de cuenca. La nueva generación de mejoradas y más robustas técnicas de datación radiométrica e isótopos estables, será invalorable en el avance de la ciencia y en su aplicación a un mejor manejo de los exiguos recursos de agua en las partes secas del mundo.

摘要

本文以澳大利亚为主要参考区, 评述了过去几十年, 干旱区水文学中环境示踪剂的应用。一些稳定与放射性同位素的成功应用包括: 查明干旱区地下水为古水, 理解补给的周期性及大型洪水对补给的重要性, 以及描绘植被的水源。计算补给与排泄速率很大程度上依赖于非饱和带的氯与氚的分布, 而放射性碳同位素与Cl-36则用于计算水**流速。本文还指出了许多新的研究方向。进一步理解分界面上修**同位素特征的各种过程, 如土壤层的浅部5m、毛细带以及排泄区, 需要定量计算流经这些区域的水通量。此外, 尽管可以定性理解大气-土壤-水-植被连续统一体之间的联系, 却无法将之定量的转移为同规模的流域尺度的地下水管理。改进的、健全的新一代稳定与放射性同位素定年技术, 将为促进学科发展及其在提高全球干旱地区的水资源管理中的应用发挥重大作用。

Resumo

É revista a aplicação de traçadores ambientais em hidrologia de zonas áridas ao longo das últimas décadas, com particular ênfase no continente australiano. Alguns dos exemplos notáveis de sucesso na aplicação de isótopos estáveis e radioactivos incluem a identificação de água subterrânea de zonas áridas como paleoáguas, a compreensão da importância de episódios e eventos de grandes cheias para a recarga e a delineação de origens de água com a vegetação. A estimação de taxas de recarga e descarga tem sido baseada, em grande parte, nos perfis de cloreto e trítio na zona não saturada, enquanto o radiocarbono e o cloro-36 são usados para estimar taxas de fluxo horizontal. São sugeridas novas oportunidades de investigação. O aprofundamento do conhecimento dos processos que modificam as assinaturas isotópicas nas zonas de interface, tais como os 5 m superiores da zona do solo, a zona capilar e a zona de descarga, é necessário para quantificar melhor os fluxos através dessas zonas. Adicionalmente, as ligações entre o contínuo atmosfera-solo-água-vegetação, apesar de estarem quantitativamente entendidas, não contemplam a transferência quantitativa a uma escala proporcional à gestão da água subterrânea à escala da bacia. A nova geração de técnicas de datação, melhoradas e mais robustas, usando isótopos estáveis e medições radiométricas, terá um valor incalculável no avanço da ciência e na sua aplicação à melhoria da gestão de recursos hídricos escassos nas zonas áridas do mundo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adar EM, Leibundgut C (1994) Application of tracers in arid zone hydrology. In: Adar EM, Leibundgut C (eds) Proc. Symp. 22–26 Aug 1994, IAHS Publ. no. 232, IAHS/IAEA, Vienna

  • Aggarwal PK, Froehlich K, Gonfiantini R, Gat JR (2005a) Isotope hydrology: a historical perspective from the IAEA. In: Aggarwal PK, Gat JR, Froehlich K (eds) Isotopes in the water cycle: past, present and future of a develo** science. Springer, Berlin, 381 pp

    Google Scholar 

  • Aggarwal PK, Gat JR, Froehlich K (2005b) Isotopes in the water cycle: past, present and future of a develo** science. In: Aggarwal PK, Gat JR, Froehlich K (eds) Isotopes in the water cycle: past, present and future of a develo** science. Springer, Berlin, 381 pp

  • Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust J Soil Res 16:181–195

    Article  Google Scholar 

  • Allison GB, Barnes CJ (1985) Estimation of evaporation from normally “dry” Lake Frome in South Australia. J Hydrol 78:229–242

    Article  Google Scholar 

  • Allison GB, Barnes CJ, Hughes MW, Leaney FW (1984) The effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope Hydrology 1983, Proc. Symp. IAEA, IAEA-SM-270/20, IAEA, Vienna, pp 105–123

  • Allison GB, Gat JR, Leaney FW (1985a) The relationship between deuterium and oxygen-18 delta values in leaf water. Chem Geol 58(1–2):145–156

    Article  Google Scholar 

  • Allison GB, Stone WJ, Hughes MW (1985b) Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride. J Hydrol 76:1–25

    Article  Google Scholar 

  • Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semi-arid regions. Soil Sci Soc Am J 58:6–14

    Article  Google Scholar 

  • Andrews JN, Fontes J-C, Aranyossy J-F, Dodo A, Edmunds WM, Joseph A, Travi Y (1994) The evolution of alkaline groundwaters in the Continental Intercalaire aquifer of the Irhazer Plain, Niger. Water Resour Res 30(1):45–61

    Article  Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Proc 14:1341–1355

    Article  Google Scholar 

  • Barnes CJ, Allison GB (1988) Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100:143–176

    Article  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Palutikof J (eds) (2008) Climate change and water. Technical Report of the IPPCC Working Group II. IPPC Secretariat, Geneva, 210 pp. http://www.ipcc.ch/publications_and_data/publications_and_data_technical_papers_climate_change_and_water.htm. Cited September 2010

  • Beyerle U, Rueedi J, Leuenberger M, Aeschbach-Hertig W, Peeters F, Kipfer R, Dodo A (2003) Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophys Res Lett 30(4):1173. doi:10.1029/2002GL016310

    Article  Google Scholar 

  • Brunel J-P, Walker GR, Kennett-Smith AK (1995) Field validation of isotopic procedures for determining water used by plants in a semi-arid environment. J Hydrol 167:351–368

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrology. Lewis, Boca Raton, FL, 345 pp

    Google Scholar 

  • Cook PG (2003) A guide to regional groundwater flow in fractured rock aquifers. Seaview, Adelaide, Australia, 108 pp

  • Cook PG, Herczeg AL (eds) (2000) Environmental tracers in subsurface hydrology. Kluwer, Boston, MA, 529 pp

  • Cook PG, Edmunds WM, Gaye CB (1992) Estimating palaeorecharge and palaeoclimate from unsaturated zone profiles. Water Resour Res 28:2721–2731

    Article  Google Scholar 

  • Cresswell RG, Wischusen J, Jacobson G, Fifield LK (1999) Assessment of recharge to groundwater systems in the arid southwestern parts of the Northern Territory, Australia using chlorine-36. Hydrogeol J 7:393–404

    Article  Google Scholar 

  • Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350:335–337

    Article  Google Scholar 

  • Edmunds WM, Tyler SW (2002) Unsaturated zones as archives of past climates: towards a new proxy for continental regions. Hydrogeol J 10:216–228

    Article  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082

    Article  Google Scholar 

  • Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rates and rate of deposition of chloride in the Israel Coastal Plain. J Hydrol 7:178–197

    Article  Google Scholar 

  • Fontes J-CH (1994) Isotope palaeohydrology and the prediction of long-term repository behaviour. Terra Review X:20–36

    Article  Google Scholar 

  • Fontes J_Ch, Edmunds WM (1989) The use of environmental isotope techniques in arid zone hydrology: a critical review. Technical documents in hydrology, IHP-III Project 5.2, UNESCO, Paris, 75 pp

    Google Scholar 

  • Fontes J-Ch, Yousfi M, Allison GB (1986) Estimation of long-term diffuse groundwater discharge in the northern Sahara using stable isotope profiles in soil water. J Hydrol 86:315–327

    Article  Google Scholar 

  • Fritz P, Fontes J-Ch (1980) Handbook of environmental isotope geochemistry, vol 1: the terrestrial environment, A. Elsevier, Amsterdam

    Google Scholar 

  • Fritz P, Fontes J-Ch (1986) Handbook of environmental isotope geochemistry, vol 2: The terrestrial environment, B. Elsevier, Amsterdam

    Google Scholar 

  • Froehlich, K, Gat JR (2001) Dating desert groundwater. Summary of Proceedings of Workshop, Sede Boqer, 23–26 Aug. 1999. Jacob Blaustein Inst. of Water Studies, Ben-Gurion University of the Negev, Israel

  • Gat JR (1983) Precipitation, groundwater and surface waters: control of climate parameters on their isotopic composition and their utilization as palaeoclimatological tools. In: Palaeoclimates and palaeowaters: a collection of environmental isotope studies. Proc. Adv. Gp. Meeting, Vienna, 25–28 Nov 1980, pp 3–12, IAEA, Vienna

  • Gat JR (1987) Variability (in time) of the isotopic composition of precipitation: consequences regarding the isotopic composition of hydrologic systems. In: Isotope techniques in water resource development, IAEA-SM-319/39, IAEA, Vienna, pp 551–563

  • Gat JR (1991) Monitoring the response of arid zone hydrology to environmental change by means of the stable isotope composition of groundwaters. In: Isotope techniques in water resource development, IAEA-SM-319/39, IAEA, Vienna, pp 521–532

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Ann Rev Earth Planet Sci 24:225–262

    Article  Google Scholar 

  • Gat JR, Issar A (1974) Desert isotope hydrology: water sources of the Sinai Desert. Geochim Cosmochim Acta 38:1117–1229

    Article  Google Scholar 

  • Gat JR, Tzur Y (1967) Modification of the isotopic composition of rainwater by processes which occur before groundwater recharge. In: Isotopes in hydrology. IAEA, Vienna, pp 49–60

  • Gaye CB, Edmunds WM (1996) Inter-comparison between physical, geochemical and isotopic methods for estimating recharge in north-western Senegal. Environ Geol 27:246–251

    Article  Google Scholar 

  • Geyh MA (1992) Numerical modelling with groundwater ages, chap. 19. In: Taylor R, Long A, Kra R (eds) Radiocarbon after four decades: an interdisciplinary perspective, Springer, New York, pp 276–287

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495

    Article  Google Scholar 

  • Harrington GA (1999) Recharge mechanisms and chemical evolution in an arid groundwater system, central Australia. PhD Thesis, Flinders University of South Australia, Australia, 293 pp

  • Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of ground water recharge in central Australia: a tracer approach. Ground Water 40:518–528

    Article  Google Scholar 

  • Herczeg AL (2007) A practical approach to radiocarbon dating of groundwater. Proc. Symp. Adv. Isotope hydrology and its role in sustainable water resource management IHS-2007, vol 2. IAEA-CN-151/135, IAEA, Vienna, pp 193–201

  • Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers, chap. 2. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, MA

    Google Scholar 

  • Herczeg AL, Dogramaci SS, Leaney FW (2001) Origin and evolution of solutes in a large semi-arid regional multi-aquifer system: Murray basin, Australia. Mar Freshw Res 52(1):41–52

    Article  Google Scholar 

  • IAEA (1964) Isotopes in hydrology. Proc. Symp. Vienna, 1963, IAEA, Vienna

  • IAEA (1967) Isotopes in hydrology. Proc. Symp. Vienna, 1966, IAEA, Vienna

  • IAEA (1980) Arid-zone hydrology: investigations with Isotope Techniques. Proc. Advisory Gp. Meeting, STI/PUB/547, IAEA, Vienna

  • IAEA (1996) Manual on mathematical models in isotope hydrogeology. IAEA TECDOC series no. 910, IAEA, Vienna

    Google Scholar 

  • IAEA (2010) WISER: map** for analysis, visualization and retrieval of hydrochemical and isotope data for local to global scales. http://nds121.iaea.org/wiser/. Cited September 2010

  • Issar A, Nativ R, Karnieli A, Gat JR (1984) Isotopic evidence of the origin of groundwater in arid zones. In: Isotope Hydrology 1983, Proc. Symp. Vienna, IAEA-SM-270/54, IAEA Vienna, pp 85–103

  • Kerstel ERTh (2007) Advances in optical water isotope ratio measurements. Proc. Symp. Adv. Isotope hydrology and its role in sustainable water resource management IHS-2007, vol 1. IAEA-CN-151/80, IAEA, Vienna, pp 115–127

    Google Scholar 

  • Leaney FW, Herczeg AL (1999) The origin of fresh groundwater in the SW Murray Basin and potential for salinisation. Report no. 7/99, CSIRO Land and Water Tech., Feb. 1999, CSIRO, Glen Osmond, Australia, 78 pp

  • Leaney FWJ, Herczeg AL, Walker GR (2003) Salinisation of a fresh palaeo-ground water resource by enhanced recharge. Ground Water 41(1):84–93

    Article  Google Scholar 

  • Love AJ, Herczeg AL, Leaney FW, Stadter MH, Dighton JC, Armstrong D (1994) Groundwater residence time and palaeohydrology in the Otway Basin, South Australia. J Hydrol 153:157–187

    Article  Google Scholar 

  • Love AJ, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, south-western Great Artesian basin, Australia. Water Resour Res 36(6):1561–1574

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining turnover times of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol 57:207–231

    Article  Google Scholar 

  • McKnight TL, Hess D (2000) Climate zones and types: dry climates (Zone B), physical geography: a landscape appreciation. Prentice Hall, Upper Saddle River, NJ, pp 212–219

    Google Scholar 

  • Moser H, Stichler W, Trimborn P (1983) Stable isotope study on palaeowaters (extended synopsis). In: Palaeoclimates and palaeowaters: a collection of environmental isotope studies. Proc. Adv. Gp. Meeting, Vienna, 25–28 Nov 1980, IAEA, Vienna, pp 201–204

  • NOAA (2010) JetStream: Online school for weather. http://www.srh.noaa.gov/jetstream/global/climate_max.htm. January 2010

  • Phillips FM (1994) Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci Soc Am J 58:14–24

    Article  Google Scholar 

  • Phillips FM (2000) Chlorine-36. In: Cook PG, Herczeg AL (eds) Environmental isotopes in subsurface hydrology. Kluwer, Boston, pp 529–347

    Google Scholar 

  • Sanford WE (1997) Correcting for diffusion in Carbon-14 dating of groundwater. Ground Water 35(2):357–361

    Article  Google Scholar 

  • Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. calibration of a groundwater flow model. Hydrogeol J 12:389–407

    Article  Google Scholar 

  • Scanlon BR (1991) Evaluation of moisture flux from chloride data in desert soils. J Hydrol 128:137–156

    Article  Google Scholar 

  • Scanlon BR (2000) Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resour Res 36:395–409

    Article  Google Scholar 

  • Scanlon BR, Keese K, Reedy RC, Simunek J, Andraski BJ (2003) Variations in flow and transport in thick desert vadose zones in response to paleoclimate forcing (0–90 kyr): field measurements, modelling, and uncertainties. Water Resour Res 39:1179. doi:110.1029/2002WR001604

    Article  Google Scholar 

  • Scanlon BR, Keese K, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Proc 20:3335–3370

    Article  Google Scholar 

  • Sonntag C, Thoma G, Munnich KO, Dincer T, Klitzsch E (1980) Environmental isotopes in North African groundwaters, and the Dahna sand-dune study, Saudi Arabia. In: Arid zone hydrology: investigations with isotope techniques. Proc. Advisory Group Meeting, IAEA Vienna, 1978, pp 77–84

  • Stone WJ (1992) Palaeohydrologic implications of some deep soil water chloride profiles, Murray basin, South Australia. J Hydrol 132:201–223

    Article  Google Scholar 

  • Stute M, Schlosser P, Clark JF, Broecker WS (1992) Palaeotemperatures in the southwest United States derived from noble gas measurements in groundwater. Science 256:1000–1003

    Article  Google Scholar 

  • Thorstenson DC, Weeks EP, Haas H, Fisher DW (1983) Distribution of gaseous 12CO2, 13CO2 and 14CO2 in the subsoil unsaturated zone of the western United States, Radiocarbon, 25(2):315–346

  • Thorstenson DC, Weeks EP, Haas H, Busenberg E, Plummer LN, Peters CA (1998) Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: data and basic concepts of chemical and physical processes in the mountain. Water Resour Res 34(6):1507–1529

    Article  Google Scholar 

  • Tyler SW, Chapman JB, Conrad SHG, Hammermeister DP, Blout DO, Miller JJ, Sully MJ, Ginanni JM (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the past 120,000 years. Water Resour Res 32:1481–1499

    Article  Google Scholar 

  • Vogel JC (1967) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology, IAEA, Vienna, pp 355–369

  • Walker GR, Cook PG (1991) The importance of considering diffusion when using carbon-14 to estimate recharge to an unconfined aquifer. J Hydrol 128:41–48

    Article  Google Scholar 

  • Walker GR, Brunel J-P, Dighton JC, Holland K, Leaney F, McEwan, K, Mensforth L, Thorburn P, Walker C (2001) The use of stable isotopes of water for determining sources of water for plant transpiration. In: Unkovich M et al. (eds) Stable isotopes in the study of biological processes and functioning of ecosystems, chap. 4. Kluwer, Dordrecht, The Netherlands, pp 57–89

  • Walvoord MA, Plummer MA, Phillips FM, Wolfsberg AV (2002) Deep arid system hydrodynamics, 1: equilibrium states and response times in thick desert vadose zones. Water Resour Res 38(12):1308. doi:10.1029/2001WR000824

    Article  Google Scholar 

  • Wang Y, Amundson R, Trumbore S (1994) A model for soil (CO2)-C-14 and its implications for using C-14 to date pedogenic carbonate. Geochim Cosmochim Acta 58(1):393–399

    Article  Google Scholar 

  • Weyhenmeyer CE, Burns SJ, Waber HN, Aeschbach-Hertig W, Kipfer R, Loosli HH, Matter A (2000) Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science 287:842–845

    Article  Google Scholar 

  • Wood WW (1999) Use and misuse of the chloride mass balance method in estimating groundwater recharge. Ground Water 37:2–3

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semi-arid environment. Ground Water 33:458–468

    Article  Google Scholar 

  • Yurtsever Y, Payne BR, (1986) Mathematical models based on compartmental simulation approach for quantitative interpretation of tracer data in hydrological systems. In: Proceedings of the 5th International Symposium on Underground Water Tracing, Institute of Geology and Mineral Exploration, Athens, 1996, pp 341–353

  • Zhu C (2000) Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling. Water Resour Res 36:2607–2620

    Article  Google Scholar 

  • Zhu C, Murphy WM (2000) On radiocarbon dating of ground water. Ground Water 38:802–804

    Article  Google Scholar 

  • Zuber A (1986) Mathematical models for the interpretation of environmental radioisotope in groundwater systems. In: Fritz P, J-Ch Fontes (eds) Handbook of environmental isotope geochemistry, vol 2. Elsevier, Amsterdam, pp 1–59

    Google Scholar 

Download references

Acknowledgements

We thank a number of colleagues who, through discussions and long-term collaboration, have contributed to the ideas presented here: including G.B. Allison, R.G. Cresswell, W.M. Edmunds, J.R. Gat, G.A. Harrington, A.J. Love, F.M. Phillips, J.V. Turner, G.R. Walker. Reviews of a previous version of this manuscript by G. Darling, B.R. Scanlon, G.M. Zuppi and C.B. Gaye are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Herczeg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herczeg, A.L., Leaney, F.W. Review: Environmental tracers in arid-zone hydrology. Hydrogeol J 19, 17–29 (2011). https://doi.org/10.1007/s10040-010-0652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0652-7

Keywords

Navigation