Log in

Facile synthesis of Cu-LDH with different Cu/Al molar ratios: application as antibacterial inhibitors

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A range of Cu-LDHs has been synthesized by co-precipitation using metal nitrate precursors and sodium carbonate under varying molar ratios Cu/Al (Cu0.05–Al0.15, Cu0.10–Al0.10, Cu0.14–Al0.06, and Cu0.15–Al0.05). The uncalcined and calcined Cu-LDHs were characterized by powder X-ray diffraction and N2 adsorption–desorption. The uncalcined solids showed clear hydrotalcite-like crystalline phases having a particle measurement between 5 and 16 nm. The best structure is attributed to the sample Cu0.05–Al0.15-LDHs. The particular surface areas are ranging between 40 and 92 m2/g, while the calcined samples showed the formation of Cu and Mg oxides. The antibacterial activity of Cu-LDHs with various molar ratios Cu/Al and their calcined phases were estimated towards multiple types of bacteria (Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Bacillus Subtilis). The Cu0.10–Al0.10-LDHs sample shows high activity against all types of bacteria either for calcined or uncalcined materials. The obtained results of the application of Cu-LDHs antibacterial inhibitors seem to be quite promising material in the antibacterial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Jiang, Y. Binghuo, W. Kemei, J. Rare Earths 26, 352–356 (2008)

    Google Scholar 

  2. K. Bakon, S. Palmer, R. Frost, J. Therm. Anal. Calorim. 100, 125–131 (2010)

    CAS  Google Scholar 

  3. D.S. Tong, C.H.C. Zhou, M.Y. Li, W.H. Yu, J. Beltramini, C.X. Lin, Z.P.G. Xu, Appl. Clay Sci. 48, 569–574 (2010)

    CAS  Google Scholar 

  4. T. Yamaoka, M. Abe, M. Tsuji, Mater. Res. Bull. 24, 1183–1199 (1989)

    CAS  Google Scholar 

  5. A. Alejandre, F. Medina, P. Salagre, X. Correig, J. Sueiras, Chem. Mater. 11, 939–948 (1999)

    CAS  Google Scholar 

  6. A.M. Fogg, G.R. Williams, R. Chester, D. O’Hare, J. Mater. Chem. 14, 2369–2371 (2004)

    CAS  Google Scholar 

  7. G. Carja, R. Nakamura, T. Aida, H. Niiyama, Microporous Mesoporous Mater. 47, 275–284 (2001)

    CAS  Google Scholar 

  8. Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong, S. Xu, Materials 3, 5220–5235 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Othman, Z. Helwani, W. Fernando, Appl. Organomet. Chem. 23, 335–346 (2009)

    CAS  Google Scholar 

  10. H.-W. Olfs, L. Torres-Dorante, R. Eckelt, H. Kosslick, Appl. Clay Sci. 43, 459–464 (2009)

    CAS  Google Scholar 

  11. J.J. Bravo-Suárez, E.A. Páez-Mozo, S.T. Oyama, Quim. Nova 27, 574–581 (2004)

    Google Scholar 

  12. P. Benito, M. Herrero, F. Labajos, V. Rives, Appl. Clay Sci. 48, 218–227 (2010)

    CAS  Google Scholar 

  13. P. Benito, M. Herrero, C. Barriga, F. Labajos, V. Rives, Inorg. Chem. 47, 5453–5463 (2008)

    CAS  PubMed  Google Scholar 

  14. H. Shi, J. He, J. Catal. 279, 155–162 (2011)

    CAS  Google Scholar 

  15. A. Chakraborty, D.A. Islam, H. Acharya, Mater. Res. Bull. 120, 110592 (2019)

    CAS  Google Scholar 

  16. J. Zhang, S. Gao, G. Wang, X. Ma, S. Jiao, D. Sang, S. Liu, M. Mao, H. Fang, J. Wang, Eur. J. Inorg. Chem. 2019, 2654–2660 (2019)

    CAS  Google Scholar 

  17. L. Zhang, F. Li, D.G. Evans, X. Duan, Mater. Chem. Phys. 87, 402–410 (2004)

    CAS  Google Scholar 

  18. H. Wang, Q. Gong, H. Huang, T. Gao, Z. Yuan, G. Zhou, Mater. Res. Bull. 107, 397–406 (2018)

    CAS  Google Scholar 

  19. K. Parida, L. Mohapatra, N. Baliarsingh, J. Phys. Chem. C 116, 22417–22424 (2012)

    CAS  Google Scholar 

  20. N. Baliarsingh, K. Parida, G. Pradhan, Ind. Eng. Chem. Res. 53, 3834–3841 (2014)

    CAS  Google Scholar 

  21. A.K. Chatterjee, R. Chakraborty, T. Basu, Nanotechnology 25, 135101 (2014)

    PubMed  Google Scholar 

  22. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Mater. Lett. 71, 114–116 (2012)

    CAS  Google Scholar 

  23. S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, J. Cluster Sci. 22, 121–129 (2011)

    CAS  Google Scholar 

  24. M.I. Nabila, K. Kannabiran, Biocatal. Agric. Biotechnol. 15, 56–62 (2018)

    Google Scholar 

  25. A. Ananth, S. Dharaneedharan, M.-S. Heo, Y.S. Mok, Chem. Eng. J. 262, 179–188 (2015)

    CAS  Google Scholar 

  26. G. Mishra, B. Dash, S. Pandey, D. Sethi, Appl. Clay Sci. 165, 214–222 (2018)

    CAS  Google Scholar 

  27. M. Zahraoui, A. Mokhtar, M. Adjdir, F. Bennabi, R. Khaled, A. Djelad, A. Bengueddach, M. Sassi, Res. Chem. Intermed. 45, 633–644 (2019)

    CAS  Google Scholar 

  28. S. Brunauer, P.H. Emmett, J. Am. Chem. Soc. 59, 2682–2689 (1937)

    CAS  Google Scholar 

  29. R. Allmann, H. Lohse, N. Jahrb, Mineral. Mh 6, 161–181 (1966)

    Google Scholar 

  30. Y. Lwin, M.A. Yarmo, Z. Yaakob, A.B. Mohamad, W.R.W. Daud, Mater. Res. Bull. 36, 193–198 (2001)

    CAS  Google Scholar 

  31. W.T. Reichle, Solid State Ionics 22, 135–141 (1986)

    CAS  Google Scholar 

  32. M. Aramendia, Y. Avile, J. Mater. Chem. 9, 1603 (1999)

    CAS  Google Scholar 

  33. A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 2, 154–160 (2012)

    Google Scholar 

  34. R.D. Shannon, Acta Crystallogr. Sect. A Crystal Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

    Google Scholar 

  35. J. RodríguezRuiz, A. PájaroPayares, E. MezaFuentes, Revista Colombiana de Química 45, 33–38 (2016)

    Google Scholar 

  36. S. Britto, P.V. Kamath, J. Solid State Chem. 182, 1193–1199 (2009)

    CAS  Google Scholar 

  37. K.S. Sing, Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  38. J. Broekhoff, J. De Boer, J. Catal. 9, 8–14 (1967)

    CAS  Google Scholar 

  39. G. Mishra, B. Dash, S. Pandey, P.P. Mohanty, J. Environ. Chem. Eng. 1, 1124–1130 (2013)

    CAS  Google Scholar 

  40. G. Mishra, B. Dash, D. Sethi, S. Pandey, B. Mishra, Environ. Eng. Sci. 34, 516–527 (2017)

    CAS  Google Scholar 

  41. A. Mokhtar, A. Djelad, A. Boudia, M. Sassi, A. Bengueddach, J. Porous Mater. 24, 1627–1636 (2017)

    CAS  Google Scholar 

  42. N. Bouchikhi, M. Adjdir, K.C. Bendeddouche, D. Bouazza, A. Mokhtar, F. Bennabi, H.A. Tabti, A. Sehmi, H. Miloudi, Mater Res Express 6, 1250–1257 (2020)

    Google Scholar 

  43. M. Rivera-Garza, M. Olguın, I. Garcıa-Sosa, D. Alcántara, G. Rodrıguez-Fuentes, Microporous Mesoporous Mater. 39, 431–444 (2000)

    CAS  Google Scholar 

  44. S.Z. Tan, K.H. Zhang, L.L. Zhang, Y.S. **e, Y.L. Liu, Chin. J. Chem. 26, 865–869 (2008)

    CAS  Google Scholar 

  45. L. Huang, D.-Q. Li, D. Evans, X. Duan, Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 34, 321–323 (2005)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadja Alia Tabti or Mehdi Adjdir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabti, H.A., Adjdir, M., Ammam, A. et al. Facile synthesis of Cu-LDH with different Cu/Al molar ratios: application as antibacterial inhibitors. Res Chem Intermed 46, 5377–5390 (2020). https://doi.org/10.1007/s11164-020-04268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04268-8

Keywords

Navigation