Log in

Unravelling Role of the Microwave Sintering Effects on Microstructure, Density, and Corrosion Behaviour of Porous Ti-13.3at.% Nb Shape Memory Alloys

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This study investigates the impact of microwave sintering on the microstructure, density, and corrosion behaviour of porous Ti-13.3at.% Nb shape memory alloys (SMAs). The alloys were subjected to microwave sintering at 800 and 1100 °C for 20 and 40 minutes, focusing on understanding the structural changes and corrosion resistance. Microstructural characterization, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD), were performed. The results revealed the formation of two distinct needle-like morphologies: straight and cross-linked needles (βSC) and irregular lines or spaghetti-like needles (βS). The area fraction of these needle structures increased with prolonged sintering duration and elevated sintering temperature, indicating enhanced diffusion between Ti and Nb elements. Density measurements showed a range of 73–75.5%, with the highest density (75.5%) achieved for samples sintered at 800 °C for 40 minutes. However, a lower density (73%) was observed for samples sintered at 1100°C for 20 minutes, attributed to the rapid heating rate of microwave sintering. Corrosion characteristics were evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectra (EIS) in simulated body fluid (SBF). The corrosion behaviour was significantly influenced by sintering temperature rather than sintering duration. Samples sintered at 1100 °C exhibited larger capacitive loops on their Nyquist plots compared to those sintered at 800 °C, indicating improved corrosion resistance. With the 800°C sintering temperature, the sintering duration had a less pronounced impact on corrosion behaviour. The EBSD analysis revealed that Ti–Nb diffusion predominantly occurred at grain boundaries, with reduced diffusion in areas further from the grain boundaries. In conclusion, this study elucidates the profound influence of microwave sintering parameters on the microstructure and corrosion behaviour of porous Ti-13.3at.% Nb SMAs. The findings provide valuable insights into optimizing the sintering process for enhanced material properties, offering potential applications in biocompatible and corrosion-resistant engineering components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U. Shukla, K. Garg, Journey of smart material from composite to shape memory alloy (SMA), characterization and their applications-a review. Smart Mater. Med. (2022). https://doi.org/10.1016/j.smaim.2022.10.002

    Article  Google Scholar 

  2. O.E. Ozbulut, S. Daghash, M.M. Sherif, Shape memory alloy cables for structural applications. J. Mater. Civ. Eng. 28(4), 04015176 (2016)

    Article  Google Scholar 

  3. J. Van Humbeeck, Shape memory alloys: a material and a technology. Adv. Eng. Mater. 3(11), 837–850 (2001)

    Article  Google Scholar 

  4. V.G. Pushin et al., Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys. Mater. Trans. 47(3), 694–697 (2006)

    Article  CAS  Google Scholar 

  5. W. Cai, X. Meng, L. Zhao, Recent development of TiNi-based shape memory alloys. Curr. Opin. Solid State Mater. Sci. 9(6), 296–302 (2005)

    Article  CAS  Google Scholar 

  6. D. Wever, A. Veldhuizen, J. De Vries, H. Busscher, D. Uges, J. Van Horn, Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials. 19(7–9), 761–769 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. S. Buxton et al., Concise review of nickel human health toxicology and ecotoxicology. Inorganics. 7(7), 89 (2019)

    Article  CAS  Google Scholar 

  8. L.C. Zhang, L.Y. Chen, A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater. 21(4), 1801215 (2019)

    Article  Google Scholar 

  9. M.K. Ibrahim, M. Kaba, F. Muhaffel, D. Ağaoğulları, H. Cimenoglu, Thermal oxidation of a porous Ti23Nb alloy for wear related biomedical applications: Effect of oxidation duration. Surf. Coat. Technol. 439, 128429 (2022)

    Article  CAS  Google Scholar 

  10. M.K. Ibrahim, E. Hamzah, E. Nazim, A. Bahador, Parameter optimization of microwave sintering porous Ti-23% Nb shape memory alloys for biomedical applications. Trans. Nonferrous Metals Soc. China. 28(4), 700–710 (2018)

    Article  CAS  Google Scholar 

  11. M.U. Farooq, F.A. Khalid, H. Zaigham, I.H. Abidi, Superelastic behaviour of Ti–Nb–Al ternary shape memory alloys for biomedical applications. Mater. Lett. 121, 58–61 (2014)

    Article  CAS  Google Scholar 

  12. A. Bahador et al., Effect of deformation on the microstructure, transformation temperature and superelasticity of Ti–23 at% Nb shape-memory alloys. Mater. Des. 118, 152–162 (2017)

    Article  CAS  Google Scholar 

  13. Y. Zhu et al., Linear-superelastic Ti–Nb nanocomposite alloys with ultralow modulus via high-throughput phase-field design and machine learning. npj Comput. Mater. 7(1), 205 (2021)

    Article  CAS  Google Scholar 

  14. M. Lai, Y. Gao, B. Yuan, M. Zhu, Effect of pore structure regulation on the properties of porous TiNbZr shape memory alloys for biomedical application. J. Mater. Eng. Perform. 24, 136–142 (2015)

    Article  CAS  Google Scholar 

  15. M.K. Ibrahim, E. Hamzah, Effect of Ce and Sb Elements addition on porous Ti–23 wt% Nb–Sn for biomedical applications. Shape Memory Superelast. 7(4), 515–525 (2021)

    Article  Google Scholar 

  16. X. Yi et al., Dam** behaviors and strain recovery characteristics of Hf-modified TiNb-based shape memory alloys. Mater. Res. Bull. 158, 112084 (2023)

    Article  CAS  Google Scholar 

  17. X. Yi et al., Unraveling role of Co addition in microstructure and mechanical properties of biomedical Ti–Nb based shape memory alloy. Mater Charact. 200, 112848 (2023)

    Article  CAS  Google Scholar 

  18. M. Bönisch et al., Thermal stability and latent heat of Nb–rich martensitic Ti–Nb alloys. J. Alloy. Compd. 697, 300–309 (2017)

    Article  Google Scholar 

  19. H. Tobe, H. Kim, T. Inamura, H. Hosoda, T. Nam, S. Miyazaki, Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys. J. Alloy. Compd. 577, S435–S438 (2013)

    Article  CAS  Google Scholar 

  20. S.F. Jawed, C.D. Rabadia, F. Azim, S.J. Khan, Effect of Nb on β→ α ″Martensitic phase transformation and characterization of new biomedical Ti-xNb-3Fe-9Zr alloys. Scanning. (2021). https://doi.org/10.1155/2021/8173425

    Article  PubMed  PubMed Central  Google Scholar 

  21. T. Zhang et al., Microstructure evolution and deformation mechanism of α+ β dual-phase Ti-xNb-yTa-2Zr alloys with high performance. J. Mater. Sci. Technol. 131, 68–81 (2022)

    Article  CAS  Google Scholar 

  22. S. Pilz, A. Hariharan, F. Günther, M. Zimmermann, A. Gebert, Influence of isothermal omega precipitation aging on deformation mechanisms and mechanical properties of a β-type Ti–Nb alloy. J. Alloy. Compd. 930, 167309 (2023)

    Article  CAS  Google Scholar 

  23. S.N. Saud, H. Bakhsheshi-Rad, F. Yaghoubidoust, N. Iqbal, E. Hamzah, C.R. Ooi, Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid. Mater. Sci. Eng. C. 68, 687–694 (2016)

    Article  CAS  Google Scholar 

  24. I. Fidan et al., Recent inventions in additive manufacturing: holistic review. Inventions. 8(4), 103 (2023)

    Article  Google Scholar 

  25. C.Y. Tang, L. Zhang, C. Wong, K.C. Chan, T.M. Yue, Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater. Sci. Eng. A. 528(18), 6006–6011 (2011)

    Article  CAS  Google Scholar 

  26. M. K. Ibrahim, E. Hamzah, S. N. Saud, E. Nazim, and A. Bahador, "Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at.%) Ni shape memory alloy fabricated by microwave sintering," in AIP conference proceedings, 2017, vol. 1901, no. 1: AIP Publishing.

  27. S. Singh, D. Gupta, V. Jain, A.K. Sharma, Microwave processing of materials and applications in manufacturing industries: a review. Mater. Manuf. Process. 30(1), 1–29 (2015)

    Article  CAS  Google Scholar 

  28. D. Singh, P.M. Pandey, D. Kalyanasundaram, Optimization of pressure-less microwave sintering of Ti6Al4V by response surface methodology. Mater. Manuf. Process. 33(16), 1835–1844 (2018)

    Article  CAS  Google Scholar 

  29. A.K. Sharma, S. Gupta, Microwave processing of biomaterials for orthopedic implants: challenges and possibilities. JOM. 72(3), 1211–1228 (2020)

    Article  Google Scholar 

  30. J. Xu et al., Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J. Alloy. Compd. 645, 137–142 (2015)

    Article  CAS  Google Scholar 

  31. S. Wakeel, V. Manakari, G. Parande, M.S. Kujur, M. Gupta, Synthesis and mechanical response of NiTi SMA nanoparticle reinforced Mg composites synthesized through microwave sintering process. Mater. Today: Proc. 5(14), 28203–28210 (2018)

    CAS  Google Scholar 

  32. L. Tao et al., Preparation and characterization of porous NiTi alloys synthesized by microwave sintering using Mg space holder. Trans. Nonferrous Metals Soc. China. 31(2), 485–498 (2021)

    Article  Google Scholar 

  33. M.-T. Choy, C.-Y. Tang, L. Chen, W.-C. Law, C.-P. Tsui, W.W. Lu, Microwave assisted-in situ synthesis of porous titanium/calcium phosphate composites and their in vitro apatite-forming capability. Compos. B Eng. 83, 50–57 (2015)

    Article  CAS  Google Scholar 

  34. B. Yeum, ZSimpWin Version 2.00, Echem Software Ann Arbor, MI, USA, 1999.

  35. H. Bakhsheshi-Rad et al., Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 53, 283–292 (2014)

    Article  CAS  Google Scholar 

  36. G. Argade, K. Kandasamy, S. Panigrahi, R. Mishra, Corrosion behavior of a friction stir processed rare-earth added magnesium alloy. Corros. Sci. 58, 321–326 (2012)

    Article  CAS  Google Scholar 

  37. Y.-H. Hon, J.-Y. Wang, Y.-N. Pan, Composition/phase structure and properties of titanium-niobium alloys. Mater. Trans. 44(11), 2384–2390 (2003)

    Article  CAS  Google Scholar 

  38. M.-K. Han, J.-Y. Kim, M.-J. Hwang, H.-J. Song, Y.-J. Park, Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti–Nb alloys. Materials. 8(9), 5986–6003 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Ibrahim, E. Hamzah, S. Saud, and A. Bahador, Microwave Sintering Porous Ti-23at.%Nb Shape-Memory Alloys for Biomedical Applications. 2017.

  40. S. Conti, M. Lenz, M. Rumpf, J. Verhülsdonk, B. Zwicknagl, Geometry of needle-like microstructures in shape-memory alloys. Shape Memory Superelast. 9(3), 437–446 (2023)

    Article  Google Scholar 

  41. V. Buscaglia, A. Martinelli, R. Musenich, W. Mayr, W. Lengauer, High-temperature nitridation of Nb–Ti alloys in nitrogen. J. Alloy. Compd. 283(1–2), 241–259 (1999)

    Article  CAS  Google Scholar 

  42. H. Wang et al., In-situ precipitated needle like nanocrystalline β-Ti reinforced porous titanium alloy via molten salt electrolysis. Met. Mater. Int. 30(1), 48–60 (2024)

    Article  CAS  Google Scholar 

  43. B. Sharma, S.K. Vajpai, K. Ameyama, Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder. J. Alloy. Compd. 656, 978–986 (2016)

    Article  CAS  Google Scholar 

  44. A. Nouri, J. Lin, Y. Li, Y. Yamada, P. Hodgson, and C. Wen, Microstructure evolution of TI-SN-NB alloy prepared by mechanical alloying, in Materials forum (CD-ROM), 2007, vol. 31: Institute of Materials Engineering Australasia, pp. 64–70.

  45. J. Young, R. Reddy, Processing and thermoelectric properties of TiNiSn materials: a review. J. Mater. Eng. Perform. 28, 5917–5930 (2019)

    Article  CAS  Google Scholar 

  46. J. Kozlík et al., Phase transformations in a heterogeneous Ti-xNb-7Zr-0.8 O alloy prepared by a field-assisted sintering technique. Mater. Des. 198, 109308 (2021)

    Article  Google Scholar 

  47. J. Wang, Y. Liu, P. Qin, S. Liang, T. Sercombe, L. Zhang, Selective laser melting of Ti–35Nb composite from elemental powder mixture: microstructure, mechanical behavior and corrosion behavior. Mater. Sci. Eng. A. 760, 214–224 (2019)

    Article  CAS  Google Scholar 

  48. M.A. Hussein, M. Kumar, R. Drew, N. Al-Aqeeli, Electrochemical corrosion and in vitro bioactivity of nano-grained biomedical Ti-20Nb-13Zr alloy in a simulated body fluid. Materials. 11(1), 26 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  49. M.A. Hussein, C. Suryanarayana, M. Arumugam, N. Al-Aqeeli, Effect of sintering parameters on microstructure, mechanical properties and electrochemical behavior of Nb–Zr alloy for biomedical applications. Mater. Des. 83, 344–351 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author of this research gratefully acknowledges the supported facilities and funds provided by Imam Ja’afar Al-Sadiq University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa K. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.K., Al-Humairi, S.N.S. Unravelling Role of the Microwave Sintering Effects on Microstructure, Density, and Corrosion Behaviour of Porous Ti-13.3at.% Nb Shape Memory Alloys. Metallogr. Microstruct. Anal. (2024). https://doi.org/10.1007/s13632-024-01091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13632-024-01091-0

Keywords

Navigation