Log in

In-Situ Precipitated Needle Like Nanocrystalline β-Ti Reinforced Porous Titanium Alloy via Molten Salt Electrolysis

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Fabricating porous active metals through chemical dealloying poses challenges due to their reactivity and vulnerability to oxidation in aqueous solutions. The objective of this study was to create micron-sized porous Ti alloy by utilizing the Ti–Mo system as a precursor alloy for chemical dealloying. The impact of phase composition and initial microstructure of the precursor alloys (Tix at% Mo100 − x at%, x = 60 ~ 70) on the morphology of the resulting porous Ti alloy was systematically investigated. To improve the mechanical strength and minimize oxidized phases during the dealloying process, a molten salt electrolysis (MSE) method was employed. The strengthening mechanism of MSE on porous Ti alloys encompassed three key aspects. Firstly, it effectively reduced the presence of oxidized phases, thereby eliminating surface defects. Secondly, MSE facilitated grain growth and eliminated voids and cracks at the grain boundaries, leading to enhanced mechanical properties. Thirdly, the involvement of a secondary phase contributed to the overall strengthening mechanism. Following MSE treatment, the oxygen content in the porous Ti alloy decreased from over 13 to 5 at%, and needle-like nanocrystalline β-Ti precipitates formed within the ligament structure. The accumulation and aggregation of compression-induced dislocations at the grain boundaries of the precipitated phase further improved the mechanical properties. In summary, this work presents an innovative approach to fabricating porous Ti alloy with low oxygen content, high strength, and adjustable microstructure. It elucidates the strength enhancement mechanism by MSE, providing insights for future materials development and applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Pałka, R. Pokrowiecki, Adv. Eng. Mater. 20, 1700648 (2018). https://doi.org/10.1002/adem.201700648

    Article  Google Scholar 

  2. S. Saedi, S. E. Saghaian, A. Jahadakbar, N.S. Moghaddam, M.T. Andani, S.M. Saghaian, Y.C. Lu, M. Elahinia, H.E. Karaca, J. Mater. Sci. Mater. Med. 29, 40 (2018). https://doi.org/10.1007/s10856-018-6044-6

    Article  Google Scholar 

  3. Q. Chen, G.A. Thouas, Mater. Sci. Eng. R Rep. 87, 1 (2015). https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  4. L. Wang, X. Hao, Z. Gao, Z. Yang, Y. Long, M. Luo, J. Guan, Interdiscip. Mater. 1, 256 (2022). https://doi.org/10.1002/idm2.12021

    Article  Google Scholar 

  5. C. Kuphasuk, Y. Oshida, C.J. Andres, S.T. Hovijitra, M.T. Barco, D.T. Brown, J. Prosthet. Dent. 85, 195 (2001). https://doi.org/10.1067/mpr.2001.113029

    Article  Google Scholar 

  6. P. Poolcharuansin, A. Chingsungnoen, N. Pasaja, M. Horprathum, J.W. Bradley, Vacuum 195, 110549 (2021). https://doi.org/10.1016/j.vacuum.2021.110549

    Article  Google Scholar 

  7. Q. Zhao, Y. Chen, W. Xu, J. Ju, Y. Zhao, M. Zhang, C. Sang, C. Zhang, Chem. Phys. Lett. 790, 139329 (2022). https://doi.org/10.1016/j.cplett.2021.139329

    Article  Google Scholar 

  8. J. Ryhänen, E. Niemi, W. Serlo, E. Niemelä, P. Sandvik, H. Pernu, T. Salo, J. Biomed. Mater. Res. A 35, 451 (1997). https://doi.org/10.1002/(SICI)1097-4636(19970615)35:4%3c451::AID-JBM5%3e3.0.CO;2-G

    Article  Google Scholar 

  9. J. Chen, S. Hu, S. Zhu, T. Li, Interdiscip. Mater. 2, 5 (2023). https://doi.org/10.1002/idm2.12049

    Article  Google Scholar 

  10. M. Hu, L. Wang, G. Li, Q. Huang, Y. Liu, J. He, H. Wu, M. Song, Intermetallics 145, 107568 (2022). https://doi.org/10.1016/j.intermet.2022.107568

    Article  Google Scholar 

  11. T. Song, M. Yan, Z. Shi, A. Atrens, M. Qian, Electrochim. Acta 164, 288 (2015). https://doi.org/10.1016/j.electacta.2015.02.217

    Article  Google Scholar 

  12. A. Hassani, E. Bagherpour, F. Qods, J. Alloys Compd. 591, 132 (2014). https://doi.org/10.1016/j.jallcom.2013.12.205

    Article  Google Scholar 

  13. R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 572, 355 (2004). https://doi.org/10.1016/j.jelechem.2004.01.008

  14. J.-W. **ao, S.-X. Fan, F. Wang, L.-D. Sun, X.-Y. Zheng, C.-H. Yan, Nanoscale 6, 4345 (2014). https://doi.org/10.1039/C3NR06843A

    Article  Google Scholar 

  15. Y.W. Lee, N.H. Kim, K.Y. Lee, K. Kwon, M. Kim, S.W. Han, J. Phys. Chem. C 112, 6717 (2008). https://doi.org/10.1021/jp710933d

    Article  Google Scholar 

  16. J.-l. Shui, C. Chen, J.C.M. Li, Adv. Funct. Mater. 21, 3357 (2011). https://doi.org/10.1002/adfm.201100723

    Article  Google Scholar 

  17. I. Chang, S. Woo, M.H. Lee, J.H. Shim, Y. Piao, S.W. Cha, Appl. Surf. Sci. 282, 463 (2013). https://doi.org/10.1016/j.apsusc.2013.05.153

    Article  Google Scholar 

  18. L. Zou, F. Chen, X. Chen, Y. Lin, Q. Shen, E.J. Lavernia, L. Zhang, J. Alloys Compd. 689, 6 (2016). https://doi.org/10.1016/j.jallcom.2016.07.258

    Article  Google Scholar 

  19. F. Chen, X. Chen, L. Zou, Y. Yao, Y. Lin, Q. Shen, E.J. Lavernia, L. Zhang, Mater. Sci. Eng. A 660, 241 (2016). https://doi.org/10.1016/j.msea.2016.02.055

    Article  Google Scholar 

  20. B. You, Y. Sun, Adv. Energy Mater. 6, 1502333 (2016). https://doi.org/10.1002/aenm.201502333

    Article  Google Scholar 

  21. Y.K. Chen-Wiegart, T. Wada, N. Butakov, X. **ao, F. De Carlo, H. Kato, J. Wang, D.C. Dunand, E. Maire, J. Mater. Res. 28, 2444 (2013). https://doi.org/10.1557/jmr.2013.151

    Article  Google Scholar 

  22. A. Allanore, L. Yin, D.R. Sadoway, Nature 497, 353 (2013). https://doi.org/10.1038/nature12134

    Article  Google Scholar 

  23. S. Jiao, L. Zhang, H. Zhu, D.J. Fray, Electrochim. Acta 55, 7016 (2010). https://doi.org/10.1016/j.electacta.2010.06.033

    Article  Google Scholar 

  24. H. Wang, F. Chen, J. Zhao, Y. Lin, Q. Shen, Mater. Sci. Eng. A 853, 143785 (2022). https://doi.org/10.1016/j.msea.2022.143785

    Article  Google Scholar 

  25. M. Zhao, I. Issa, M.J. Pfeifenberger, M. Wurmshuber, D. Kiener, Acta Mater. 182, 215 (2020). https://doi.org/10.1016/j.actamat.2019.10.030

    Article  Google Scholar 

  26. K.M. Schmalbach, Z. Wang, R.L. Penn, D. Poerschke, A. Antoniou, A. Stein, N.A. Mara, , J. Mater. Res. 35, 2556 (2020). https://doi.org/10.1557/jmr.2020.130

    Article  Google Scholar 

  27. M.F. Ashby, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 15 (2006). https://doi.org/10.1098/rsta.2005.1678

    Article  Google Scholar 

  28. M.Y. Zhao, K. Schlueter, M. Wurmshuber, M. Reitgruber, D. Kiener, Mater. Des. 197, 109187 (2021). https://doi.org/10.1016/j.matdes.2020.109187

    Article  Google Scholar 

  29. K. Liu, Y. Bai, L. Zhang, Q. Fan, H. Zheng, Y. Yin, C. Gao, Nano Lett. 16, 3675 (2016). https://doi.org/10.1021/acs.nanolett.6b00868

    Article  Google Scholar 

  30. X. Liao, H. **e, Y. Zhai, Y. Zhang, J. Mater. Sci. Technol. 25, 717 (2009). https://www.jmst.org/CN/Y2009/V25/I05/717

    CAS  Google Scholar 

  31. K. Nakamura, T. Iida, N. Nakamura, T. Araike, Mater. Trans. 58, 319 (2017). https://doi.org/10.2320/matertrans.MK201634

    Article  Google Scholar 

  32. H. Zhao, L. **e, C. **n, N. Li, B. Zhao, L. Li, Mater. Today Commun. 34, 105032 (2023). https://doi.org/10.1016/j.mtcomm.2022.105032

    Article  Google Scholar 

  33. A.A. El Mel, F. Boukli-Hacene, L. Molina-Luna, N. Bouts, A. Chauvin, D. Thiry, E. Gautron, N. Gautier, P.-Y. Tessier, ACS Appl. Mater. Interfaces 7, 2310 (2015). https://doi.org/10.1021/am5065816

    Article  Google Scholar 

  34. K. Bawane, X. Liu, R. Gakhar, M. Woods, M. Ge, X. **ao, W.-K. Lee, P. Halstenberg, S. Dai, S. Mahurin, S.M. Pimblott, J.F. Wishart, Y.K. Chen-Wiegart, L. He, Corros. Sci. 195, 109962 (2022). https://doi.org/10.1016/j.corsci.2021.109962

    Article  Google Scholar 

  35. L.J. Gibson, Ann. Rev. Mater. Sci. 30, 191 (2000). https://doi.org/10.1146/annurev.matsci.30.1.191

    Article  Google Scholar 

  36. N. Nomura, T. Kohama, I.H. Oh, S. Hanada, A. Chiba, M. Kanehira, K. Sasaki, Mater. Sci. Eng. C 25, 330 (2005). https://doi.org/10.1016/j.msec.2005.04.001

    Article  Google Scholar 

  37. I.H. Oh, N. Nomura, N. Masahashi, S. Hanada, Scr. Mater. 49, 1197 (2003). https://doi.org/10.1016/j.scriptamat.2003.08.018

    Article  Google Scholar 

  38. E. Ziya, E.T. Bor, B.O.R. Şakir, Characterization of loose powder sintered porous titanium and Ti6Al4V alloy. Turk. J. Eng. Environ. Sci. 33, 207 (2009)

    Google Scholar 

  39. X. Rao, C.L. Chu, Y.Y. Zheng, J. Alloys Compd. 34, 27 (2014). https://doi.org/10.1016/j.jmbbm.2014.02.001

    Article  Google Scholar 

  40. M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, Biomaterials 26, 6014 (2005). https://doi.org/10.1016/j.biomaterials.2005.03.019

    Article  Google Scholar 

  41. Y.-H. Li, N. Chen, H.-T. Cui, F. Wang, J. Alloys Compd. 723, 967 (2017). https://doi.org/10.1016/j.jallcom.2017.06.321

    Article  Google Scholar 

  42. Y. Wang, J. Tao, J. Zhang, T. Wang, Trans. Nonferrous Metals Soc. China 21, 1074 (2011). https://doi.org/10.1016/S1003-6326(11)60824-8

    Article  Google Scholar 

  43. J. Ruan, H. Yang, X. Weng, J. Miao, K. Zhou, J. Mater. Sci. Mater. Med. 27, 76 (2016). https://doi.org/10.1007/s10856-016-5685-6

    Article  Google Scholar 

  44. S.-I. Hahn, S.J. Hwang, J. Alloys Compd. 483, 207 (2009). https://doi.org/10.1016/j.jallcom.2008.07.205

    Article  Google Scholar 

  45. A. Melaibari, A. Wagih, M. Basha, A.M. Kabeel, G. Lubineau, M.A. Eltaher, Compos. Part A Appl. Sci. Manuf. 144, 106362 (2021). https://doi.org/10.1016/j.compositesa.2021.106362

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Key Research and Development Program of China (2021YFA0716304), the Guangdong Major Project of Basic and Applied Basic Research (2021B0301030001), Project supported by the Space Utilization System of China Manned Space Engineering (KJZ-YY- WCL03), National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (6142902210109), Independent Innovation Projects of the Hubei Longzhong Laboratory (2022ZZ-32), the National Natural Science Foundation of China (No. 51972246, and 51521001) and the Joint Fund (No. 8091B022108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhao, J., Li, H. et al. In-Situ Precipitated Needle Like Nanocrystalline β-Ti Reinforced Porous Titanium Alloy via Molten Salt Electrolysis. Met. Mater. Int. 30, 48–60 (2024). https://doi.org/10.1007/s12540-023-01497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01497-5

Keywords

Navigation