Log in

Influence of Superalloy Substrate Composition on the Oxidation Resistance of β-NiAl Diffusion Coating

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The oxidation resistance of β-NiAl diffusion coating deposited on selected Ni-based superalloys with commercial grades has been investigated. Emphasis has been placed upon oxide microstructure and oxidation kinetics. It is shown that the presence of sufficient concentration of Hf in the superalloy substrate has the effect of decelerating the kinetics of Al2O3 growth as well as improving its adhesion to the substrate. On the other hand, the Hf effect appears to outweigh the possible detrimental effects of both Ti and precipitates of α-Cr near the coating surface. Conversely, the results indicate that in the absence of Hf, the oxidation resistance is degraded by the combined detrimental effects of both Ti and α-Cr, which are reflected by higher oxide growth rate and poor adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.K. Das, Microstructure and high-temperature oxidation behavior on Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater Sci. 58, 151–182 (2013)

    Article  Google Scholar 

  2. J. Jedlinski, The influence of reactive elements on the high temperature oxidation behavior of alumina-forming alloys. Solid State Phenom. 21–22, 335–390 (1992)

    Article  Google Scholar 

  3. A.M. Huntz, Effect of active elements on the oxidation behavior of Al2O3-formers, in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. by E. Lang (Elsevier, London, 1989), pp. 81–110

    Chapter  Google Scholar 

  4. F.H. Stott, Principles of growth and adhesion of oxide scales, the role of active elements, in The Oxidation Behavior of High Temperature Metals and Alloys, ed. by E. Lang (Elsevier, London, 1989), pp. 3–22

    Google Scholar 

  5. H. Hindam, D.P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys. Oxid. Met. 1982(18), 245–284 (1982)

    Article  Google Scholar 

  6. D.P. Whittle, J. Stringer, Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos. Trans. R. Soc. A A295, 309–329 (1980)

    Article  Google Scholar 

  7. M. Fukumoto, A. Yokobori, M. Hara, Formation of b-NiAl containing Hf by the simultaneous electrodeposition of Al and Hf using molten-salt and the cyclic oxidation behavior. Oxid. Met. 85, 17–28 (2016)

    Article  Google Scholar 

  8. Y. Wang, J.L. Smialek, M. Suneson, Oxidation behavior of modified aluminide coatings on inconel-718 at 1050o CJ. Coat. Sci. Technol. 1, 25–45 (2014)

    Article  Google Scholar 

  9. B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prubner, K.B. Alexander, Substrate and bond coat compositions: factors affecting alumina scale adhesion. Mater. Sci. Eng., A A245, 201–2011 (1998)

    Article  Google Scholar 

  10. M. Zagula-Yavorska, J. Morgiel, J. Romanowska, TEM analysis of the hafnium-doped aluminide coating deposited on inconel 100 superalloy. Vacuum 116, 115–120 (2015)

    Article  Google Scholar 

  11. B.A. Pint, J.A. Haynes, T.M. Besmann, Effect of Hf and Y alloy additions on aluminide coating performance. Surf. Coat. Technol. 204, 3287–3293 (2010)

    Article  Google Scholar 

  12. J.A. Haynes, B.A. Pint, K.L. More, Y. Zhang, I.G. Wright, Influence of sulfur, platinum and hafnium on the oxidation behavior of CVD NiAl bond coatings. Oxid. Met. 58, 513–544 (2002)

    Article  Google Scholar 

  13. B.A. Pint, K.L. More, I.G. Wright, Effect of quaternary additions on the oxidation behavior of Hf-doped NiAl. Oxid. Met. 59, 257–283 (2003)

    Article  Google Scholar 

  14. R. Pendse, J. Stringer, The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11% Al alloy with and without reactive element additions. Oxid. Met. 23, 1–16 (1985)

    Article  Google Scholar 

  15. H.M. Tawancy, Enhancing the oxidation properties of gamma prime plus gamma platinum bond coat by rhenium and yttrium additions for improved adhesion of thermal barrier coatings on nickel-base superalloys. Oxid. Met. 84, 491–507 (2015)

    Article  Google Scholar 

  16. H.M. Tawancy, L.M. Al-Hadhrami, Influence of titanium in nickel-base superalloys on the performance of thermal barrier coatings utilizing gamma–gamma′ platinum bond coats. J. Eng. Gas Turbines Power 133, 042101 (2011)

    Article  Google Scholar 

  17. M. Levy, P. Farell, F.S. Pettit, Oxidation of some advanced single-crystal nickel-base superalloys in air at 2000-F (1093-C). NACE-Corros. 42, 708–717 (1986)

    Article  Google Scholar 

  18. Y. Zhou, L. Wang, G. Wang, D. **, W. Hao, X. Zhao, J. Zhang, P. **ao, Influence of substrate composition on the oxidation performance of nickel aluminide coating prepared by pack cementation. Corros. Sci. 110, 284–295 (2016)

    Article  Google Scholar 

  19. Q. Wu, R. Wang, Y. Wu, S. Li, Y. Ma, S. Gong, A comparative study of four modified Al coatings on Ni3Al-based single crystal superalloy. Prog. Nat. Sci.: Mater. Int. 21, 496–505 (2011)

    Article  Google Scholar 

  20. C.S. Giggins, F.S. Pettit, Oxidation of Ni-Cr-Al alloys between 1000o and 1200o C. J. Electrochem. Soc. 118, 1782–1790 (1971)

    Article  Google Scholar 

  21. D.A. Ford, R.P. Arthey, Development of single-crystal superalloys for specific applications, in Superalloys 1984, ed. by M. Gell, W.B. Ken (The Metallurgical Society of AIME, Warrendale, PA, 1984), pp. 115–124

  22. P.C. Patnaik, Intermetallic coatings for high temperature applications-a review. Mater. Manuf. Process. 4, 133–152 (1989)

    Article  Google Scholar 

  23. P.J. Goodhew, J. Humphreys, R. Beanland, Electron Microscopy and Analysis (Taylor and Francis, New York, 2001), pp. 22–24

    Google Scholar 

  24. H.M. Tawancy, L.M. Al-Hadhrami, Comparative performance of thermal barrier coating system utilizing platinum aluminide coat on alloys CMSX-4 and MARM 002DS. J. Eng. Gas Turbines Power 134, 012101 (2012)

    Article  Google Scholar 

  25. N. Arikan, The first principle study on Zr3Al and Sc3Al in L12 structure. J. Phys. Chem. Sol. 74, 794–798 (2013)

    Article  Google Scholar 

  26. P. Tomszewicz, G.R. Wallwork, Degradation of alumina-forming coating systems on nickel-, cobalt- and iron-based alloy by high temperature oxidation. Rev. High Temp. Mater. 5, 49–91 (1982)

    Google Scholar 

  27. H.M. Tawancy, N.M. Abbas, T.N. Rhys-Jones, Role of platinum in aluminide coatings. Surf. Coat. Technol. 49, 1–7 (1991)

    Article  Google Scholar 

  28. H.M. Tawancy, On the role of yttrium in alumina formers: comparative oxidation behavior of Ni-Cr-Al and Ni-Cr-Al-Y alloys. Oxid. Met. 86, 371–383 (2016)

    Article  Google Scholar 

  29. M.W. Brumm, H.J. Grabke, The oxidation behavior of NiAl-I. Phase transformations in the aluminia scale during oxidation of NiAl and NiAl-Cr alloys. Corros. Sci. 33, 1677–1690 (1992)

    Article  Google Scholar 

  30. J.D. Kuenzly, D.L. Douglass, Oxidation mechanism of Ni3Al containing yttrium. Oxid. Met. 8, 139–178 (1974)

    Article  Google Scholar 

  31. A. Kumar, M. Nasrallah, D.L. Douglass, Effect of yttrium and thorium on oxidation behavior of Ni-Cr-Al alloys. Oxid. of Met. 8, 227–263 (1974)

    Article  Google Scholar 

  32. C.S. Giggins, F.S. Pettit, Oxidation of Ni-Cr alloys between 800 degrees and 1200 degrees C. Trans. Metall. Soc. AIME 245, 2495–2507 (1969)

    Google Scholar 

  33. J. Schaeffer, G.M. Kim, G.H. Meier, F.S. Pettit, The effects of precious metals on the oxidation and hot corrosion of metals, in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. by E. Lang (Elsevier, London, 1989), pp. 231–267

    Chapter  Google Scholar 

  34. K.P.R. Reedy, J.L. Smialek, A.R. Copper, 18O tracer studies of Al2O3 scale formation on NiCrAl alloys. Oxid. Met. 17, 429–449 (1982)

    Article  Google Scholar 

  35. F.A. Golightly, F.H. Stott, G.C. Wood, The influence of yttrium addition on the oxide-scale adhesion to an iron-chromium-alumin. Oxid. Met. 10, 163–187 (1976)

    Article  Google Scholar 

  36. T.A. Ramanarayanan, M. Raghavan, R. Petkovic-Luton, Metallic yttrium additions to high temperature alloys: influence on Al2O3 scale properties. Oxid. Met. 22, 83–100 (1984)

    Article  Google Scholar 

  37. T.A. Ramanarayanan, M. Raghavan, R. Petkovic-Luton, The characteristics of alumina scales formed on Fe-based yttria-dispered alloys. J. Electrochem. Soc. 131, 923–931 (1984)

    Article  Google Scholar 

  38. T.A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, D.P. Leta, The influence of yttrium on oxide scale growth and adhesion. Oxid. Met. 29, 445–472 (1988)

    Article  Google Scholar 

  39. H.M. Tawancy, On the role of yttrium during high-temperature oxidation of an Ni-Cr-Al-Fe-Y alloy. Metall. Trans. A 22A, 1463–1465 (1991)

    Article  Google Scholar 

  40. J. Jedlinski, The influence of active elements on the stress-relaxation in scale and substrate of alumina-forming alloys, in The Role of Active Elements in the High Temperature Oxidation of Metals and Alloys, ed. by E. Lang (Elsevier, London, 1989), pp. 131–152

    Google Scholar 

Download references

Acknowledgments

The author is grateful for the continued support provided by King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawancy, H.M. Influence of Superalloy Substrate Composition on the Oxidation Resistance of β-NiAl Diffusion Coating. Metallogr. Microstruct. Anal. 7, 65–76 (2018). https://doi.org/10.1007/s13632-017-0415-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-017-0415-0

Keywords

Navigation