Log in

Biogas production from fermented sugarcane vinasse: impact of trace elements supplementation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The anaerobic digestion of the sugarcane vinasse from ethanol production can generate bioenergy and reduce its polluting potential. However, the biogas production efficiency might be hampered by trace elements (TE) seasonal variation and unbalanced composition in the vinasse. This study evaluated the effect of TE supplementation, i.e. Co, Cu, Fe, Mn, Ni, and Se, on the maximum CH4 production (P), the maximum CH4 production rate (Rm) and the maximum productivity (Pr) from sugarcane fermented vinasse from a two-stage AD system. Fractional Factorial Design (FFD) was applied to screen TE with positive effects on the responses, and Central Composite Design (CCD) was used to optimise these responses, followed by a validation test. Co, Ni and Mn positive effects were identified for the considered responses using FFD. As Ni significantly positively affected P and Pr in CCD, it was added at the concentration of 0.9 mg L-1 in the validation test. The Ni supplementation was responsible for a 50% increase in the Rm response, it improved the Pr by 17% and decreased the peak time by 29% compared to the control condition. The decreasing concentrations of acetic acid (HAc) and COD during the assays suggest that the Ni supplementation might have stimulated CODH/ACS, an enzyme involved in the consumption of HAc by acetoclastic methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available within the article and its supplementary materials.

References

  1. Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C et al (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32:353–365. https://doi.org/10.1177/0734242X14529178

    Article  Google Scholar 

  2. Cherubini F (2010) The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  3. Foresti E, Zaiat M, Vallero M (2006) Anaerobic processes as the core technology for sustainable domestic wastewater treatment : Consolidated applications , new trends , perspectives , and challenges. 3–19. https://doi.org/10.1007/s11157-005-4630-9

  4. Bolzonella D, Battista F, Cavinato C et al (2018) Recent developments in biohythane production from household food wastes: A review. Bioresour Technol 257:311–319. https://doi.org/10.1016/j.biortech.2018.02.092

    Article  Google Scholar 

  5. Fuess LT, Garcia ML (2015) Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manag 162:102–114. https://doi.org/10.1016/j.jenvman.2015.07.046

    Article  Google Scholar 

  6. Moraes BS, Junqueira TL, Pavanello LG et al (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Appl Energy 113:825–835. https://doi.org/10.1016/j.apenergy.2013.07.018

    Article  Google Scholar 

  7. de Oliveira LV, de Barros VG, Duda RM, de Oliveira RA (2023) Anaerobic digestion of vinasse and water treatment plant sludge increases methane production and stability of UASB reactors. J Environ Manag 327:116451. https://doi.org/10.1016/j.jenvman.2022.116451

    Article  Google Scholar 

  8. Fuess LT, Garcia ML (2014) Implications of stillage land disposal: A critical review on the impacts of fertigation. J Environ Manag 145:210–229. https://doi.org/10.1016/j.jenvman.2014.07.003

    Article  Google Scholar 

  9. Moran-Salazar RG, Sanchez-Lizarraga AL, Rodriguez-Campos J et al (2016) Utilization of vinasses as soil amendment: consequences and perspectives. Springerplus 5. https://doi.org/10.1186/s40064-016-2410-3

  10. Speece RE (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ Sci Technol 17(9):416A–427A. https://doi.org/10.1021/es00115a725

  11. Annachhatre AP (1996) Anaerobic treatment of industrial wastewaters. Resour Conserv Recycl 16:161–166. https://doi.org/10.1016/b978-0-08-029249-6.50013-1

    Article  Google Scholar 

  12. Goyal SK, Seth R, Handa BK (1996) Diphasic fixed-film biomethanation of distillery spentwash. Bioresour Technol 56:239–244. https://doi.org/10.1016/0960-8524(96)00033-8

    Article  Google Scholar 

  13. de ADN F-J, Koyama MH, de Araújo Júnior MM, Zaiat M (2016) Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew Energy 89:245–252. https://doi.org/10.1016/j.renene.2015.11.064

    Article  Google Scholar 

  14. Fuess LT, Zaiat M, de Nascimento CAO (2021) Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits. Energy Convers Manag 239:114203. https://doi.org/10.1016/j.enconman.2021.114203

    Article  Google Scholar 

  15. Fuess LT, Kiyuna LSM, Ferraz ADN et al (2017) Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy 189:480–491. https://doi.org/10.1016/j.apenergy.2016.12.071

    Article  Google Scholar 

  16. Braga AFM, Pereira MBOC, Zaiat M et al (2018) Screening of trace metal supplementation for black water anaerobic digestion. Environ Technol 39:1776–1785. https://doi.org/10.1080/09593330.2017.1340343

    Article  Google Scholar 

  17. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: A review. Biotechnol Adv 32:1523–1534. https://doi.org/10.1016/j.biotechadv.2014.10.005

    Article  Google Scholar 

  18. Cubero-Cardoso J, Braga AFM, Trujillo-Reyes Á et al (2023) Effect of metals on mesophilic anaerobic digestion of strawberry extrudate in batch mode. J Environ Manag 326. https://doi.org/10.1016/j.jenvman.2022.116783

  19. da Silva JA, Braga AF, Fermoso FG et al (2021) Evaluation of the influence of trace metals on methane production from domestic sewage, using the Plackett-Burman experimental design. J Environ Manag 294:113002. https://doi.org/10.1016/j.jenvman.2021.113002

    Article  Google Scholar 

  20. Janke L, Leite AF, Batista K et al (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20. https://doi.org/10.1016/j.biortech.2016.01.110

    Article  Google Scholar 

  21. de VG B, Duda RM, da Silva Vantini J et al (2017) Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresour Technol 244:371–381. https://doi.org/10.1016/j.biortech.2017.07.106

    Article  Google Scholar 

  22. Wang J, Wan W (2009) Experimental design methods for fermentative hydrogen production: A review. Int J Hydrog Energy 34:235–244

    Article  Google Scholar 

  23. Paulo LM, Ramiro-Garcia J, van Mourik S et al (2017) Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.01341

    Article  Google Scholar 

  24. Piffer MA, Zaiat M, Nascimento CAO, do Fuess LT (2021) Dynamics of sulfate reduction in the thermophilic dark fermentation of sugarcane vinasse: A biohydrogen-independent approach targeting enhanced bioenergy production. J Environ Chem Eng 9:105956. https://doi.org/10.1016/j.jece.2021.105956

    Article  Google Scholar 

  25. Kiyuna LSM, Fuess LT, Zaiat M (2017) Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse. Bioresour Technol 232:103–112. https://doi.org/10.1016/j.biortech.2017.02.028

    Article  Google Scholar 

  26. da Conceição VM, Pozzi E, Sakamoto IK et al (2021) Effect of Organic Loading Rate on the Microbial Community in Anaerobic Chambered Reactor Processing Ethanol Distillery Vinasse. Water Air Soil Pollut 232. https://doi.org/10.1007/s11270-021-05441-4

  27. Fuess LT, Garcia ML, Zaiat M (2018) Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci Total Environ 634:29–40. https://doi.org/10.1016/j.scitotenv.2018.03.326

    Article  Google Scholar 

  28. de Godoi LAG, Camiloti PR, Bernardes AN et al (2019) Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. Environ Sci Pollut Res 26:29267–29282. https://doi.org/10.1007/s11356-019-06019-8

    Article  Google Scholar 

  29. APHA (2012) Standard Methods for the Examination of Water and Wastewater. In: American Public Health Association (APHA), 22nd edn. American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, DC

    Google Scholar 

  30. Taylor KACC (1996) A simple colorimetric assay for muramic acid and lactic acid. Appl Biochem Biotechnol 56:49–58. https://doi.org/10.1007/BF02787869

    Article  Google Scholar 

  31. Buchanan ID, Nicell JA (1997) Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol Bioeng 54:251–261. https://doi.org/10.1002/(SICI)1097-0290(19970505)54:3<251::AID-BIT6>3.0.CO;2-E

    Article  Google Scholar 

  32. Greenhill SJ (2004) Method for determination of free and combined glycerin in biodiesel (Patent No. US 2004/0137546A1). United States. https://patents.google.com/patent/US20040137546A1/en

  33. Ripley ALE, Boyle WC, Converse JC (1986) Improved alkalimetric for anaerobic digestion wastes monitoring of municipal sludge. Water Pollut Contron Fed 58:406–411

    Google Scholar 

  34. Adorno MAT, Hirasawa JS, Varesche MBA (2014) Development and Validation of Two Methods to Quantify Volatile Acids (C2-C6) by GC/FID: Headspace (Automatic and Manual) and Liquid-Liquid Extraction (LLE). Am J Anal Chem 5:406–414

    Article  Google Scholar 

  35. Araujo MN, Vargas SR, Soares LA et al (2023) Rapid method for determination of biogas composition by gas chromatography coupled to a thermal conductivity detector ( GC-TCD ). Int J Environ Anal Chem 00:1–18. https://doi.org/10.1080/03067319.2023.2210055

    Article  Google Scholar 

  36. Adorno MAT, Mirandola CAS, Pimenta DFN, Tomita IN (2014) Development and validation of a method (GC/TCD) to determine N2, CH4, CO2 and H2S in biogas. In: XI Latin American Workshop and Symposium on Anaerobic Digestion (DAAL). La Habana, p 7

    Google Scholar 

  37. Braga AFM, Zaiat M, Silva GHR, Fermoso FG (2017) Metal fractionation in sludge from sewage UASB treatment. J Environ Manag 193:98–107. https://doi.org/10.1016/j.jenvman.2017.01.070

    Article  Google Scholar 

  38. Bizzi CA, Flores ELM, Nóbrega JA et al (2014) Evaluation of a digestion procedure based on the use of diluted nitric acid solutions and H2O2 for the multielement determination of whole milk powder and bovine liver by ICP-based techniques. J Anal At Spectrom 29:332–338. https://doi.org/10.1039/c3ja50330e

    Article  Google Scholar 

  39. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    Article  Google Scholar 

  40. Chen H, Gan Q, Fan C (2020) Methyl-Coenzyme M Reductase and Its Post-translational Modifications. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.578356

  41. Florencio L, Field JIMA, Lettinga G (1994) Importance of cobalt for individual trophic groups in anaerobic methanol-degrading consortium. Appl Environ Microbiol 60(1):227–234. https://doi.org/10.1128/aem.60.1.227-234.1994

  42. Das A, Fu Z-Q, Tempel W et al (2007) Characterization of a Corrinoid Protein Involved in the C1 Metabolism of Strict Anaerobic Bacterium Moorella thermoacetica. Proteins Struct Funct Bioinforma 67:167–176. https://doi.org/10.1002/prot

    Article  Google Scholar 

  43. Oleszkiewicz JA, Sharma VK (1990) Stimulation and Inhibition of Anaerobic Processes by Heavy Metals - A Review. Biol Wastes 31:45–67

    Article  Google Scholar 

  44. Cai Y, Zheng Z, Zhao Y et al (2018) Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Bioresour Technol 266:166–175. https://doi.org/10.1016/j.biortech.2018.06.061

    Article  Google Scholar 

  45. Miles RD, Iyer PP, Ferry JG (2001) Site-directed Mutational Analysis of Active Site Residues in the Acetate Kinase from Methanosarcina thermophila. J Biol Chem 276:45059–45064. https://doi.org/10.1074/jbc.M108355200

    Article  Google Scholar 

  46. Chan SHJ, Nørregaard L, Solem C, Jensen PR (2014) Acetate kinase isozymes confer robustness in acetate metabolism. PLoS One 9. https://doi.org/10.1371/journal.pone.0092256

  47. Doukov TI, Iverson TM, Seravalli J et al (2002) A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298:567–572. https://doi.org/10.1126/science.1075843

    Article  Google Scholar 

  48. Costa RB, Godoi LAG, Braga AFM et al (2021) Sulfate removal rate and metal recovery as settling precipitates in bioreactors: Influence of electron donors. J Hazard Mater 403:123622. https://doi.org/10.1016/j.jhazmat.2020.123622

    Article  Google Scholar 

  49. Lenz M, Janzen N, Lens PNL (2008) Selenium oxyanion inhibition of hydrogenotrophic and acetoclastic methanogenesis. Chemosphere 73:383–388. https://doi.org/10.1016/j.chemosphere.2008.05.059

    Article  Google Scholar 

  50. Gonzalez-Gil G, Lens PNL, Saikaly PE (2016) Selenite reduction by anaerobic microbial aggregates: Microbial community structure, and proteins associated to the produced selenium spheres. Front Microbiol 7:1–14. https://doi.org/10.3389/fmicb.2016.00571

    Article  Google Scholar 

  51. Wintsche B, Glaser K, Sträuber H et al (2016) Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion. Front Microbiol 7:1–13. https://doi.org/10.3389/fmicb.2016.02034

    Article  Google Scholar 

  52. Moestedt J, Nordell E, Shakeri Yekta S et al (2016) Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manag 47:11–20. https://doi.org/10.1016/j.wasman.2015.03.007

    Article  Google Scholar 

  53. Costa RB, O’Flaherty V, Lens PNL (2020) Biological treatment of organic sulfate-rich wastewaters. In: Lens PNL (ed) Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering. IWA Publishing, London, pp 167–213

    Chapter  Google Scholar 

  54. Wang HZ, Yan YC, Gou M et al (2019) Response of Propionate-Degrading Methanogenic Microbial Communities to Inhibitory Conditions. Appl Biochem Biotechnol 189:233–248. https://doi.org/10.1007/s12010-019-03005-1

    Article  Google Scholar 

  55. Oleszkiewicz JA, Marstaller T, McCartney DM (1989) Effects of pH on sulfide toxicity to anaerobic processes. Environ Technol Lett 10:815–822. https://doi.org/10.1080/09593338909384801

    Article  Google Scholar 

  56. Moura AGL, Delforno TP, Rabelo CABS et al (2023) Iron zero valent nanoparticles applied in the biorefinery concept: Functional genes in continuous bioreactor fermenting vinasse. Biomass Bioenergy 174:106845. https://doi.org/10.1016/j.biombioe.2023.106845

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Council for Scientific and Technological Development via the Institutional Program for Scientific Initiation Scholarships (PIBIC-CNPq); the São Paulo Research Foundation (FAPESP) [grant numbers 2018/00213-8, 2015/ 06246-7, 2016/13603-3].

Author information

Authors and Affiliations

Authors

Contributions

Beatriz Gardiman Arruda: Investigation, Writing – original draft, Visualisation, Formal analysis. Rachel Biancalana Costa: Investigation, Writing – original draft, Visualisation, Formal analysis, Funding acquisition. Marcelo Zaiat: Writing – review & editing, Funding acquisition. Adriana Ferreira Maluf Braga: Supervision, Conceptualization, Investigation, Writing – original draft, Visualisation, Formal analysis, Funding acquisition.

Corresponding author

Correspondence to Adriana F. M. Braga.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 127 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruda, B.G., Costa, R.B., Zaiat, M. et al. Biogas production from fermented sugarcane vinasse: impact of trace elements supplementation. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05036-5

Keywords

Navigation