Log in

Ensemble Smoother with Enhanced Initial Samples for Inverse Modeling of Subsurface Flow Problems

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ensemble-based data assimilation methods have been extensively investigated for inverse problems of fluid flow in porous media. However, when the permeability field is characterized by fine-scale gridblocks, the problem can be ill-posed and result in non-unique solutions. To address this issue, the principal component analysis with truncation was presented, but it may lead to biased estimation. In this paper, we propose to keep all eigenfunctions without truncation and add an additional sorting step after principal component analysis: sorting the initial samples according to the dimensional variability and assigning the dimensions with large variances to the leading eigenfunctions. The estimation is expected to be more accurate as the subspace spanned by the ensemble favors the dominant components. The proposed method is tested for multiple synthetic flow and transport cases. The results show that it provides more accurate estimation of the permeability fields and generates better history matching and prediction results for the production data (by 10–15%) than the results from the standard ensemble smoother, with the same computational cost. This sorting approach can be readily extended to the ensemble Kalman filter as well, for inverse modeling and estimating reservoir properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

C :

Covariance

f :

Eigenfunction

h :

Hydraulic head, m

k :

Absolute permeability, mD

k :

Relative permeability for a phase fluid

N :

Normal distribution

p c :

Capillary pressure, psia

p α :

Pressure of αα phase fluid, psia

q α :

Source/sink term, kg/s

S α :

Saturation of the α phase fluid

S or :

Residual oil saturation

S wc :

Irreducible water saturation

t :

Time, day

u α :

Velocity of α phase fluid, m/s

x :

Location in space, m

Y :

Log-permeability, mD

λ :

Eigenvalue

ξ :

Independent random variable

η :

Correlation length, ft

σ 2 :

Variance

μ α :

Viscosity of α phase fluid, Pa·s

ρ α :

Density of α phase fluid, kg/m3

ϕ :

Porosity

RMSE:

Root mean square error

BHP:

Bottom hole pressure, psia or bar

OPR:

Oil production rate, bbl/day or m3/day

WPR:

Water production rate, bbl/day or m3/day

GOR:

Gas–oil ratio

WCT:

Water cut

FOPT:

Field oil production total, bbl/day or m3/day

FGPT:

Field gas production total, bbl/day or m3/day

FWPT:

Field water production total, bbl/day or m3/day

References

  1. Zhong, H.; Li, Y.; Zhang, W.; Yin, H.; Lu, J.; Guo, D.: Microflow mechanism of oil displacement by viscoelastic hydrophobically associating water-soluble polymers in enhanced oil recovery. Polymers 10, 628 (2018)

    Article  Google Scholar 

  2. Chen, S.Y.; Hsu, K.C.; Fan, C.M.: Improvement of generalized finite difference method for stochastic subsurface flow modeling. J. Comput. Phys. 429, 110002 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lei, G.; Liao, Q.; Lin, Q.; Zhang, L.; Xue, L.; Chen, W.: Stress dependent gas-water relative permeability in gas hydrates: a theoretical model. Adv. Geo Energy Res. 4, 326–338 (2020)

    Article  Google Scholar 

  4. Wang, S.; Qin, C.; Feng, Q.; Javadpour, F.; Rui, Z.: A framework for predicting the production performance of unconventional resources using deep learning. Appl. Energy 295, 117016 (2021)

    Article  Google Scholar 

  5. El-Amin, M.; Kou, J.; Sun, S.; Salama, A.: Adaptive time-splitting scheme for two-phase flow in heterogeneous porous media. Adv. Geo Energy Res. 1, 182–189 (2017)

    Article  Google Scholar 

  6. Rostami, A.; Daneshi, A.; Miri, R.: Proposing a rigorous empirical model for estimating the bubble point pressure in heterogeneous carbonate reservoirs. Adv. Geo Energy Res. 4, 126–134 (2020)

    Article  Google Scholar 

  7. Liao, Q.; Zeng, L.; Chang, H.; Zhang, D.: Efficient history matching using the Markov-chain Monte Carlo method by means of the transformed adaptive stochastic collocation method. SPE J. 24, 1468–1489 (2019)

    Article  Google Scholar 

  8. Yang, E.; Fang, Y.; Liu, Y.; Li, Z.; Wu, J.: Research and application of microfoam selective water plugging agent in shallow low-temperature reservoirs. J. Pet. Sci. Eng. 193, 107354 (2020)

    Article  Google Scholar 

  9. Wang, Y.; Li, X.J.: Physicochemical modeling of barium and sulfate transport in porous media and its application in seawater-breakthrough monitoring. SPE J. 26, 1–22 (2021)

    Article  Google Scholar 

  10. Tang, Y.; Hou, C.; He, Y.; Wang, Y.; Chen, Y.; Rui, Z.: Review on pore structure characterization and microscopic flow mechanism of CO2 flooding in porous media. Energy Technol. 9, 2000787 (2021)

    Article  Google Scholar 

  11. Reichle, R.H.; McLaughlin, D.B.; Entekhabi, D.: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rev. 130, 103–114 (2002)

    Article  Google Scholar 

  12. Houtekamer, P.; Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 144, 4489–4532 (2016)

    Article  Google Scholar 

  13. Chen, Y.; Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv. Water Res. 29, 1107–1122 (2006)

    Article  Google Scholar 

  14. Xue, L.; Zhang, D.: A multimodel data assimilation framework via the ensemble Kalman filter. Water Resour. Res. 50, 4197–4219 (2014)

    Article  Google Scholar 

  15. Xue, L.; Zhang, D.; Guadagnini, A.; Neuman, S.P.: Multimodel Bayesian analysis of groundwater data worth. Water Resour. Res. 50, 8481–8496 (2014)

    Article  Google Scholar 

  16. Zhang, J.; Vrugt, J.A.; Shi, X.; Lin, G.; Wu, L.; Zeng, L.: Improving simulation efficiency of MCMC for inverse modeling of hydrologic systems with a Kalman-inspired proposal distribution. Water Resour. Res. 56, e2019WR025474 (2020)

    Article  Google Scholar 

  17. Zhu, P.; Shi, L.; Zhu, Y.; Zhang, Q.; Huang, K.; Williams, M.: Data assimilation of soil water flow via ensemble Kalman filter: infusing soil moisture data at different scales. J. Hydrol. 555, 912–925 (2017)

    Article  Google Scholar 

  18. Aanonsen, S.I.; Nævdal, G.; Oliver, D.S.; Reynolds, A.C.; Vallès, B.: The ensemble Kalman filter in reservoir engineering-a review. SPE J. 14, 393–412 (2009)

    Article  Google Scholar 

  19. Gu, Y.; Oliver, D.S.: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J. 12, 438–446 (2007)

    Article  Google Scholar 

  20. Liao, Q.; Zhang, D.: Data assimilation for strongly nonlinear problems by transformed ensemble Kalman filter. SPE J. 20, 202–221 (2015)

    Article  Google Scholar 

  21. Oliver, D.S.; Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 185–221 (2011)

    Article  MATH  Google Scholar 

  22. Zeng, L.; Zhang, D.: A stochastic collocation based Kalman filter for data assimilation. Comput. Geosci. 14, 721–744 (2010)

    Article  MATH  Google Scholar 

  23. Liao, Q.; Alsamadony, K.; Lei, G.; Awotunde, A.; Patil, S.: Reservoir history matching by ensemble smoother with principle component and sensitivity analysis for heterogeneous formations. J. Pet. Sci. Eng. 198, 108140 (2021)

    Article  Google Scholar 

  24. Gu, Y.; Oliver, D.S.: The ensemble Kalman filter for continuous updating of reservoir simulation models. J. Energy Resour. 128, 79–87 (2006)

    Article  Google Scholar 

  25. Li, G.; Reynolds, A.C.: Iterative ensemble Kalman filters for data assimilation. SPE J. 14, 496–505 (2009)

    Article  Google Scholar 

  26. Bailey, R.; Baù, D.: Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution. Water Resour. Res. 46, W12543 (2010)

    Article  Google Scholar 

  27. Emerick, A.A.; Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)

    Article  Google Scholar 

  28. Evensen, G.: Data Assimilation: the Ensemble Kalman Filter. Springer, Berlin (2007)

    MATH  Google Scholar 

  29. Skjervheim, J.A.; Evensen, G.: An ensemble smoother for assisted history matching. In: SPE Reservoir Simulation Symposium, The Woodlands, Texas (2011)

  30. Evensen, G.; Eikrem, K.S.: Conditioning reservoir models on rate data using ensemble smoothers. Comput. Geosci. (2018). https://doi.org/10.1007/s10596-018-9750-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Chang, H.; Zhang, D.: History matching of statistically anisotropic fields using the Karhunen-loeve expansion-based global parameterization technique. Comput. Geosci. 18, 265–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. He, J.; Sarma, P.; Durlofsky, L.J.: Reduced-order flow modeling and geological parameterization for ensemble-based data assimilation. Comput. Geosci. 55, 54–69 (2013)

    Article  Google Scholar 

  33. Reynolds, A.C.; He, N.; Chu, L.; Oliver, D.S.: Reparameterization techniques for generating reservoir descriptions conditioned to variograms and well-test pressure data. SPE J. 1, 413–426 (1996)

    Article  Google Scholar 

  34. Sarma, P.; Durlofsky, L.J.; Aziz, K.: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math. Geosci. 40, 3–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oliver, D.S.; Chen, Y.: Improved initial sampling for the ensemble Kalman filter. Comput. Geosci. 13, 13 (2009)

    Article  MATH  Google Scholar 

  36. Uyeda, J.C.; Caetano, D.S.; Pennell, M.W.: Comparative analysis of principal components can be misleading. Syst. Biol. 64, 677–689 (2015)

    Article  Google Scholar 

  37. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  38. Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (1989)

    Book  Google Scholar 

  39. Ghanem, R.G.; Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  40. Jafarpour, B.; McLaughlin, D.B.: History matching with an ensemble Kalman filter and discrete cosine parameterization. Comput. Geosci. 12, 227–244 (2008)

    Article  MATH  Google Scholar 

  41. Floris, F.J.T.; Bush, M.D.; Cuypers, M.; Roggero, F.; Syversveen, A.-R.: Methods for quantifying the uncertainty of production forecasts. Pet. Geosci. 7, S87–S96 (2001)

    Article  Google Scholar 

  42. Gu, Y.; Oliver, D.S.: History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J. 10, 51–65 (2005)

    Article  Google Scholar 

  43. PUNQ-S3 model: https://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models/(2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinzhuo Liao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q. Ensemble Smoother with Enhanced Initial Samples for Inverse Modeling of Subsurface Flow Problems. Arab J Sci Eng 48, 9535–9548 (2023). https://doi.org/10.1007/s13369-022-07343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07343-x

Keywords

Navigation