Log in

Effects of Nanoparticulate Delivery of Silicon on the Growth and Yield of Rice (Oryza sativa L.)

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon is a quasi-essential element despite of its critical role in growth and productivity of plants. Herein, we intend to assess the effects of nanoscale silica particles (foliar application) on the growth and productivity of rice (Oryza sativa L.). Nanoscale silica was prepared using chemical method and was characterized for detailing the size, structure and surface morphology. Foliar spray of different concentrations (50, 100, 200, 400, 600 800 and 1000 ppm) of nanoscale silica significantly influenced on growth and yield attributes of rice. Significant grain yield (22.57 g plant−1) and straw yields (30.47 g plant−1) were recorded (28.60% and 19.16% higher respectively) with SiNPs @ 200 ppm compared to silicic acid @ 4 ml L−1 (17.55 and 25.5 g plant−1). Silicon content in straw (3.19%), grain (1.33%) and protein content (8.49%) were significantly higher @200 ppm SiNPs compared to silicic acid @ 4 ml L−1 (2.65%, 1.10% and 7.78% respectively). Significantly enhanced antioxidant enzymatic activities @ 800 ppm SiNPs over silicic acid @ 4 ml L−1. Thus, SiNPs have significant promontory effects on the overall growth and yield of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data is available with the corresponding author and could be provided as and when required.

References

  1. Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664. https://doi.org/10.1146/annurev.arplant.50.1.641

    Article  CAS  PubMed  Google Scholar 

  2. Richmond KE, SussmanM (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272. https://doi.org/10.1016/S1369-5266(03)00041-4

  3. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes: a review. J Plant Nutr Soil Sci 169(3):310–329. https://doi.org/10.1002/jpln.200521981

    Article  CAS  Google Scholar 

  4. Nakata Y, Ueno M, Kihara J, Ichii M, Taketa S, Arase S (2008) Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. Crop Prot 27(3&5):65–868. https://doi.org/10.1016/j.cropro.2007.08.016

    Article  CAS  Google Scholar 

  5. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91(1):11–17. https://doi.org/10.1073/pnas.91.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamenidou S, Cavins TJ, Mare KS (2009) Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Sci Hortic 119(3):297–301. https://doi.org/10.1016/j.scienta.2008.08.012

    Article  CAS  Google Scholar 

  7. Wainwright M (1997) The neglected microbiology of silicon-from the origin of life to an explanation for what Henry Charlton Bastian saw. Soc Gen Microbiol Q 24(3):83–85

    Google Scholar 

  8. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927. https://doi.org/10.1080/01904167.2012.663443

    Article  CAS  Google Scholar 

  9. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815. https://doi.org/10.3389/fpls.2016.00815

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prasad TNVKV, Adam S, Rao PV, Reddy BR,Krishna, TG (2017) Size dependent effects of antifungal phytogenic silver nanoparticles on germination, growth and biochemical parameters of rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L.) IET Nanobiotechnol 11(3):277–285. https://doi.org/10.1049/iet-nbt.2015.0122

  11. Naseeruddin R, Sumathi V, Prasad TNVKV, Sudhakar P, Reddy BR,Chandrika V (2018) Unprecedented synergistic effects of nanoscaleZnO, CaO&MgO on productivity of sweet sorghum (Sorghum bicolor L.) and nutrient biofortification. J Food Agric Chem 66(5):1075–1084. https://doi.org/10.1021/acs.jafc.7b04467

  12. Verma KK, Song XP, Verma CL, Chen ZL, Rajput VD, Wu KC, Liao F, Chen GL, Li YR (2021) Functional relationship between photosynthetic leaf gas exchange in response to silicon application and water stress mitigation in sugarcane. Biol Res 54(1):1–11. https://doi.org/10.1186/s40659-021-00338-2

    Article  CAS  Google Scholar 

  13. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siddiqui MH,Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicumesculentum Mill.). Saudi J Biol Sci 21(1): 13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

  15. Manokari M, Dey A, Faisal M, Alatar AA, Joshee N, Shekhawat MS (2023) Structural alterations of Cymbopogon citrates Stapf leaves and roots caused by silicon nanoparticles during in vitro propagation. Ind Crops Prod 197:116648. https://doi.org/10.1016/j.indcrop.2023.116648

  16. Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Botanical athuanica 21(1):13–21. https://doi.org/10.1515/botlit-2015-0002

    Article  Google Scholar 

  17. Prasad TNVKV, Satisha GC, Kumar AN, Swethasree M, Girish BP, Sudhakar P, Reddy BR, Saritha M, Sabitha N, Bhaskar Reddy BV, Rajasekhar P (2022) Particulate nanoscale silica induced novel morphological and biochemical stimulus effects in chilli (Capsicum annuum L.). ACS Agric Sci Technol 2(3):555–563. https://doi.org/10.1021/acsagscitech.2c00008

  18. Khan ZS, Rizwan M, Hafeez M, Ali S, Adrees M, Qayyum MF, Khalid S, Rehman MZU, Sarwa MA (2020) Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environ Sci Pollut Res 27:4958–4968. https://doi.org/10.1007/s11356-019-06673-y

    Article  CAS  Google Scholar 

  19. Caceres M, Vassena CV, Garcera MD, Santo-Orihuela PL (2019) Silica nanoparticles for insect pest control. Curr Pharm Des 25:1–9. https://doi.org/10.2174/1381612825666191015152855

    Article  CAS  Google Scholar 

  20. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  21. Angelini R, Manes F, Federico R (1990) Spatial and functional correlation between diamine oxidase and peroxidase activities and their dependence upon etiolation and wounding in Chickpea stem. Planta 182:89–96. https://doi.org/10.1007/BF00239989

    Article  CAS  PubMed  Google Scholar 

  22. Sadasivam S, Manikam A (2013) Biochemical Methods 2nd Edition. New age International Limited Publishe, New Delhi

  23. Albrecht JA (1993) Acorbic acid and retention in lettuce. J Food Qual 16:311–316. https://doi.org/10.1111/j.1745-4557.1993.tb00116.x

    Article  CAS  Google Scholar 

  24. Yoshida S, Navasero SA, Ramirez EA (1969) Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31(1):48–56. https://doi.org/10.1007/BF01373025

    Article  CAS  Google Scholar 

  25. Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2002) Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J Plant Res 115(1):23–0027. https://doi.org/10.1007/s10265020000

    Article  CAS  PubMed  Google Scholar 

  26. Okuda A, Takahashi E (1962) Studies on the physiological role of Si in crop plants. VIII Specificity of Si uptake by rice plants. J Sci Soil Manure 33:217–221

  27. Isa M, Bai S, Yokoyama T, Ma JF, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2010) Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil 331(1):361–375. https://doi.org/10.1007/s11104-009-0258-9

    Article  CAS  Google Scholar 

  28. Pati S, Pal B, Badole S, Hazra GC, Mandal B (2016) Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun Soil Sci Plant Anal 47(3):284–290. https://doi.org/10.1080/00103624.2015.1122797

    Article  CAS  Google Scholar 

  29. Kowalska J, Tyburski J, Jakubowska M, Krzymińska J (2021) Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 13(1):211–217. https://doi.org/10.1007/s12633-020-00414-4

    Article  CAS  Google Scholar 

  30. Zhang Y, Yu C, Lin J, Liu J, Liu B, Wang J, Huang A, Li H, Zhao T (2017) OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE 12(7):0180825. https://doi.org/10.1371/journal.pone.0180825

    Article  CAS  Google Scholar 

  31. Agostinho FB, Tubana BS, Martins MS, Datnoff LE (2017) Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants 6(3):35. https://doi.org/10.3390/plants6030035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang YC (1998) Effect of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity of barley under salt stress. Pedosphere 8(4):289–296

    Google Scholar 

  33. Gerami M, Fallah A,Moghadam MRK (2012) Study of potassium and sodium silicate on the morphological and chlorophyll content on the rice plant in pot experiment (Oryza sativa L.). Int J Agric Crop Sci 4(10):658–661

  34. Patil AA, Durgude AG, Pharande AL, Kadlag AD, Nimbalkar CA (2017) Effect of calcium silicate as a silicon source on growth and yield of rice plants. Int J Chem Stud 5(6):45–549

    Google Scholar 

  35. Moghadam MRK, Heidarzadeh H (2014) Response of silicate fertilizer effects, rice husk and rice husk ash on rice paddy growth and seed yield (Shiroodi cultivar) in pot condition. Int J Farming Allied Sci 3(4):49–452

    Google Scholar 

  36. Liang YC, Ma TS, Li FS, Feng YJ (1994) Silicon availability and response of rice and wheat to silicon in calcareous soils. Soil Sci Plant Anal 25(13–14):2285–2297. https://doi.org/10.1080/00103629409369189

    Article  CAS  Google Scholar 

  37. Attia EA, Elhawat N (2021) Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold (Tagetes erecta L.). Sci Hortic 282:110015. https://doi.org/10.1016/j.scienta.2021.110015

  38. Ma JF (2009) Silicon uptake and translocation in plants. Department of Plant Sciences, UC Davis

  39. Zeng X, Liang J, Tan Z (2007) Effects of silicate on some photosynthetic characteristics of sugarcane leaves. J-Huazhong Agric Univ 26(3):330

    CAS  Google Scholar 

  40. Kaufman PB, Dayanandan P, Takeoka Y, Bigelow WC, Jones JD, Iler R (1981) Silica in shoots of higher plants. In Silicon and siliceous structures in biological systems 409–449. https://doi.org/10.1007/978-1-4612-5944-2_15

  41. Dorairaj D, Ismail MR, Sinniah UR, Tan KB (2020) Silicon mediated improvement in agronomic traits, physiological parameters and fiber content in Oryza sativa. Acta Physiol Plant 42(3):1–11. https://doi.org/10.1007/s11738-020-3024-5

    Article  CAS  Google Scholar 

  42. Rani AY, Narayanan A (1994) Role of silicon in plant growth. Annu Rev Plant Physiol 1:243–262

    Google Scholar 

  43. Savant NK, Snyder GH, Datnoff LE (1996) Silicon management and sustainable rice production. Adv Agron 58:151–199. https://doi.org/10.1016/S0065-2113(08)60255-2

    Article  Google Scholar 

  44. Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35(1):25–34. https://doi.org/10.1023/A:1005810616885

  45. Prakash NB, Chandrasekhar N, Mahindra C, Patil SU, Thippeshappa GN, Laane HM (2011) Effect of foliar spray of soluble silicic acid on growth and yield parameters of wetland rice in hilly and coastal zone soils of Karnataka, south India. J Plant Nutr 34(12):1883–1893. https://doi.org/10.1080/01904167.2011.600414

    Article  CAS  Google Scholar 

  46. Behboudi F, TahmasebiSarvestani Z, Kassaee MZ, Modares Sanavi SA, Sorooshzadeh A (2018) Improving growth and yield of wheat under drought stress via application of SiO2 nanoparticles. J Agric Sci Technol 20(7):1479–1492

    Google Scholar 

  47. Yang R, Howe JA, Golden BR (2019) Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). J Agron Crop Sci 4:353–61.https://doi.org/10.1111/jac.12327

  48. Ghorbanpour M, Mohammadi H, Kariman K (2020) Nanosilicon-based recovery of barley (Hordeumvulgare) plants subjected to drought stress. Environ Sci 7(2):443–461. https://doi.org/10.1039/C9EN00973F

    Article  CAS  Google Scholar 

  49. Elshayb OM, Nada AM, Ibrahim HM, Amin HE, Atta AM (2021) Application of silica nanoparticle for improving growth, yield, and enzymatic antioxidant for the hybrid rice EHR1 growing under water regime conditions. Materials 14:1150–1169. https://doi.org/10.3390/ma14051150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salim BB, Abou El-Yazied A, Salama YA, Raza A, Osman HS (2021) Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition. Ann Agric Sci 66(2):176–183. https://doi.org/10.1016/j.aoas.2021.12.003

    Article  Google Scholar 

  51. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613. https://doi.org/10.3389/fpls.2017.00613

    Article  PubMed  PubMed Central  Google Scholar 

  52. Agarie S, Agat W, Kaufman PB (1998) Involvement of silicon in the senescence of rice leaves. Plant Prod Sci 1(2):104–105. https://doi.org/10.1626/pps.1.104

    Article  Google Scholar 

  53. Liu JJ, Lin SH, Xu PL, Wang XJ, Bai JG (2009) Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric Sci China 8(9):1075–1086. https://doi.org/10.1016/S1671-2927(08)60315-6

    Article  CAS  Google Scholar 

  54. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativa L.). Plant Sci 167(3):527–533. https://doi.org/10.1016/j.plantsci.2004.04.020

  55. Jawahar S, Vijayakumar D, Bommera R, Jain N (2015) Effect of silixol granules on growth and yield of rice. Int J Curr Res Acad Rev 3(5):74–80

    CAS  Google Scholar 

  56. Malay Jugal K, Ramani V (2017) Effect of silicon on nitrogen use efficiency, yield and nitrogen and silicon contents in rice under loamy sand soil. Res J Chem Environ 21(4):58–63

  57. Wattanapayapkul W, Polthanee A, Siri B, Bhadalung NN, Promkhambut A (2011) Effects of silicon in suppressing blast disease and increasing grain yield of organic rice in Northeast Thailand. Asian J Plant Pathol 5(4):134–145

    Article  Google Scholar 

  58. Deren CW, Datnoff LE, Snyder GH, Martin FG (1994) Silicon concentration, disease response and yield components of rice genotypes grown on flooded organic Histosols. Crop Sci 34(3):733–737. https://doi.org/10.2135/cropsci1994.0011183X003400030024x

    Article  Google Scholar 

  59. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17. https://doi.org/10.1016/j.envexpbot.2015.07.001

    Article  CAS  Google Scholar 

  60. Crooks R, Prentice P (2017) Extensive investigation into field based responses to a silica fertilizer. Silicon 9(2):301–304. https://doi.org/10.1007/s12633-015-9379-3

    Article  CAS  Google Scholar 

  61. Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A (2019) Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 139:1–10. https://doi.org/10.1016/j.plaphy.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  62. Mathukia RK, Puja R, Dadhania NM (2014) Climate change adaptation: real time nitrogen management in maize (Zea mays L.) using leaf colour chart. Curr World Environ 9(3):1028–1033. https://doi.org/10.12944/CWE.9.3.58

  63. Barad BB, Mathukia RK, Der HN, Bodar KH (2018) Real time nitrogen fertilization using precision tools for enhancing productivity of wheat (Triticum aestivum). Int J Pure Appl Biosci 6(2):434–440. https://doi.org/10.18782/2320-7051.6352

  64. Wu S, Fen X,Wittmeier A (1977) Microwave digestion of plant and grain reference materials in nitric acid or a mixture of nitric acid and hydrogen peroxide for the determination of multi elements by Inductively Coupled plasma-mass spectrometry. J Anal Atomic Spectrom 12:797–806. https://doi.org/10.1039/A607217H**a

  65. Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FÁ, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3):752–762. https://doi.org/10.1111/j.1469-8137.2012.04299.x

    Article  CAS  PubMed  Google Scholar 

  66. Haddad C, Arkoun M, Jamois F, Schwarzenberg A, Yvin JC, Etienne P, Laine P (2018) Silicon promotes growth of Brassica napus L. and delays leaf senescence induced by nitrogen starvation. Front Plant Sci 23(9):516. https://doi.org/10.3389/fpls.2018.00516

  67. Gou T, Yang L, Hu W, Chen X, Zhu Y, Guo J, Gong H (2020) Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiol Biochem 1(152):53–61. https://doi.org/10.1016/j.plaphy.2020.04.03

    Article  Google Scholar 

Download references

Acknowledgements

D Gopal would like thank the authorities of Acharya N G Ranga Agricultural University, Lam Guntur for providing research facilities at Institute of Frontier Technology, RARS, Tirupati and IITM, Chennai for extending electron microscopic facility to carry out part of the research.

Author information

Authors and Affiliations

Authors

Contributions

DG and TNVKVP conceived the concept and execution of the research work. DG, TNVKVP, ChBRR, ARN, RN, MVSN participated in analysis and writing of the manuscript. TP and TNVKVP and DG monitoring of research work and manuscript final preparation.

Corresponding authors

Correspondence to T. N. V. K. V. Prasad or T. Pradeep.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10971 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, D., Prasad, T.N.V.K.V., Pradeep, T. et al. Effects of Nanoparticulate Delivery of Silicon on the Growth and Yield of Rice (Oryza sativa L.). Silicon 16, 253–263 (2024). https://doi.org/10.1007/s12633-023-02673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02673-3

Keywords

Navigation