Log in

Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To examine whether silica bodies are essential for silicon-enhanced growth of rice seedlings, we investigated the response of rice, Oryza sativa L., to silicon treatment. Silicic acid treatment markedly enhanced the SPAD (soil plant analytical development) values of leaf blades and the growth and development of leaves and lateral roots in cvs. Hinohikari and Oochikara, and a low-silicon mutant, lsi1. Combination of ethanol–benzene displacement and staining with crystal violet lactone enabled more detailed histochemical analysis to visualize silica bodies in the epidermis under bright-field microscopy. Supply of silicon induced the development of motor cells and silica bodies in epidermal cells in Hinohikari and Oochikara but not or marginal in lsi1. X-ray analytical microscopy detected silicon specifically in the leaf sheath, the outermost part of the stem, and the leaf blade midrib, suggesting that silicon is distributed to tissues involved in maintaining rigidity of the plant to prevent lodging, rather than being passively deposited in growing tissues. Silicon supplied at high dose accumulated in all rice seedlings and enhanced growth and SPAD values with or without silica body formation. Silicon accumulated in the cell wall may play an important physiological role different from that played by the silica deposited in the motor cell and silica bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

eV:

Electron voltage

Si:

Silicic acid

SPAD:

Soil and plant analysis development

References

  • Agarie S, Agata W, Kaufman PB (1998a) Involvement of silicon in the senescence of rice leaves. Plant Prod Sci 1:104–105

    Article  Google Scholar 

  • Agarie S, Agata W, Uchida H, Kubota F, Kaufman PB (1998b) Function of silica bodies in the epidermal system of rice (Oryza sativa L): testing the window hypothesis. J Exp Bot 47:655–660. doi:10.1093/jxb/47.5.655

    Article  Google Scholar 

  • Agbagla-Dohnani A, Noziere P, Gaillard-Martinie B, Puard Doreau M (2003) Effect of silica content on rice straw ruminal degradation. J Agric Sci 140:183–192. doi:10.1017/S0021859603003034

    Article  CAS  Google Scholar 

  • Ando H, Kakuda K, Fujii H, Suzuki K, Ajiki T (2002) Growth and canopy structure of rice plants grown under field conditions as affected by Si application. Soil Sci Plant Nutr 48:429–432

    CAS  Google Scholar 

  • Casey WH, Kinrade SD, Knight CTG, Rains DW, Epstein E (2003) Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ 27:51–54. doi:10.1046/j.0016-8025.2003.01124.x

    Article  Google Scholar 

  • Dayanandan P, Kaufman PB, Franklin CI (1983) Detection of silica in plants. Amer J Bot 70:1079–1084

    Article  CAS  Google Scholar 

  • Dikeman E, Bechtel DB, Pomeranz Y (1981) Distribution of elements in the rice kernel determined by X-ray analysis and atomic absorption spectroscopy. Cereal Chem 58:148–152

    CAS  Google Scholar 

  • Dingkuhn M, Cruz RT, O’Toole JC, Dorffling K (1989) Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Aust J Agric Res 40:1171–118. doi:10.1071/AR9891171

    Article  Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice. Nutrient disorders and nutrient management. Handbook series. Potash and Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute. p 191

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664. doi:10.1146/annurev.arplant.50.1.641

    Article  CAS  PubMed  Google Scholar 

  • Gao XP, Zou CQ, Wang LJ, Zhang FS (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470. doi:10.1081/PLN-200025865

    Article  CAS  Google Scholar 

  • Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164:349–356. doi:10.1016/S0168-9452(02)00419-3

    Article  CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxova M, Lux A (2003a) Application of silicon enhanced drought tolerance in Sorghum bicolor. Plant Physiol 123:459–466. doi:10.1111/j.1399-3054.2005.00481.x

    Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2003b) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749. doi:10.1093/pcp/pcg090

    Article  CAS  Google Scholar 

  • Hokura A, Onuma R, Kitajima N, Terada Y, Saito H, Abe T, Yoshida S, Nakai I (2006) 2-D X-ray fluorescence imaging of cadmium hyperaccumulating plants by using high-energy synchrotron radiation X-ray microbeam. Chem Lett 35:1246–1250. doi:10.1246/cl.2006.1246

    Article  CAS  Google Scholar 

  • Idris MD, Hossain MM, Choudhury FA (1975) The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil 43:691–695. doi:10.1007/BF01928531

    Article  Google Scholar 

  • Inanaga S, Okasaka A (1995) Calcium and silicon binding compounds in cell wall of rice shoots. Soil Sci Plant Nutr 41:103–110

    CAS  Google Scholar 

  • Kaufman PB, Soni SL, LaCroix JD, Rosen JJ, Bigelow WC (1972) Electron-probe microanalysis of silicon in the epidermis of rice (Oryza sativa L.). Planta 104:10–17

    Article  CAS  Google Scholar 

  • Kaufman PB, Dayanandan P, Franklin CI, Takeoka Y (1985) Structure and function of silica bodies in the epidermal system of grass shoots. Ann Bot 55:487–507

    Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Plant Pathol 92:1095–1103. doi:doi/pdf/10.1094/PHYTO.2002.92.10.1095

    Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 15:87–92. doi:10.1034/j.1399-3054.2002.1150110

    Article  Google Scholar 

  • Lux A, Luxova M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441. doi:10.1046/j.1469-8137.2003.00764.x

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119. doi:10.1007/BF00041376

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi:10.1016/j.tplants.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780. doi:10.1104/pp.010271

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117. doi:10.1104/pp.010348

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004) Characterization of the silicon uptake and molecular map** of the silicon transporter gene in rice. Plant Physiol 136:3284–3289. doi:10.1104/pp.104.047365

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691. doi:10.1038/nature04590

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007a) An efflux transporter of silicon in rice. Nature 448:209–212. doi:10.1038/nature05964

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007b) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145:919–924. doi:10.1104/pp.107.107599

    Article  CAS  Google Scholar 

  • Miah MY, Chino M (1999) Observation of element distribution in potassium deficient barley (Hordeum vulgare L.) leaf by energy dispersive X-ray fluorescence analysis. Bot Bull Acad Sin 40:135–140

    CAS  Google Scholar 

  • Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L). Plant Cell Physiol 46:279–283. doi:10.1093/pcp/pci018

    Article  CAS  PubMed  Google Scholar 

  • Morikawa CK, Saigusa M (2004) Mineral composition and accumulation of silicon in tissues of blueberry (Vaccinum corymbosus cv. Bluecrop) cuttings. Plant Soil 258:1–8. doi:10.1023/B:PLSO.0000016489.69114.55

    Article  CAS  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano HY, Sakai H, Nagato Y (2003) SUPERWOMAN 1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718. doi:10.1242/10.1242/dev.00294

    Article  CAS  PubMed  Google Scholar 

  • Okuda A, Takahashi E (1962) Studies on the physiological role of Si in crop plants. VIII Specificity of Si uptake by rice plants. J Sci Soil Manure 33:217–221

    CAS  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440. doi:10.1663/0006-8101(2004)069[0377:SABOSB]2.0.CO;2

    Article  Google Scholar 

  • Raven JA (2003) Cycling silicon-the role of accumulation in plants. New Phytol 158:419–421. doi:10.1046/j.1469-8137.2003.00778.x

    Article  Google Scholar 

  • Soni SL, Kaufman PB, Bigelow WC (1972) Electron probe analysis of silicon and other elements in leaf epidermal cells of the Rice plant (Oryza sativa L). Amer J Bot 59:38–42

    Article  CAS  Google Scholar 

  • Takahashi E (1987) Silica and calcic plants. Nobunkyo, Tokyo, pp 54–103

    Google Scholar 

  • Takahashi E (1995) Uptake mode and physiological functions of silica. In: Matsuo T, Kumazawa K, Ishii R, Ishihara K, Hirata H (eds) Science of the Rice Plant. Physiology. Food and Agriculture Policy Research Center, Tokyo, pp 1–111

    Google Scholar 

  • Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. Jpn J Soil Sci Manure 49:357–360

    CAS  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comm Agric Food Chem 2:99–122

    CAS  Google Scholar 

  • Takahashi N, Kato Y, Isogai A, Kurata K (2006) Silica distribution on the husk epidermis at different parts of the panicle in rice (Oryza sativa L) determined by X-ray microanalysis. Plant Prod Sci 9:168–171. doi:10.1626/pps.9.168

    Article  CAS  Google Scholar 

  • Tamai K, Ma JF (2008) Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307:21–27. doi:10.1007/s11104-008-9571-y

    Article  CAS  Google Scholar 

  • Tsuda M, Morita M, Mkihara D, Hirai Y (2000) The involvement of silicon deposition in salinity-induced white head in rice (Oryza sativa L.). Plant Prod Sci 3:328–334

    Article  Google Scholar 

  • Ueno O, Agarie S (2005) Silica deposition in cell walls of the stomatal apparatus of rice leaves. Plant Prod Sci 8:71–73. doi:10.1626/pps.8.71

    Article  Google Scholar 

  • Watanabe S, Shimoi E, Ohkama N, Hayashi H, Yoneyama T, Yazaki J, Fujii F, Shinbo K, Yamamoto K, Sakata K, Sasaki KN, Kikuchi S, Fujiwara T (2004) Identification of several rice genes regulated by Si nutrition. Soil Sci Plant Nutr 50:1273–1276

    CAS  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313. doi:10.1104/pp.106.093005

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T, Ueda A, Kato K, Mogi K, Matsuo S (2002) A study of the alumina–silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid. J Colloid Interface Sci 252:1–5. doi:10.1006/jcis.2002.8382

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (1965) Chemical aspects of the role of silicon in physiology of the rice plant. Bull Nat Inst Agric Sci Ser 15:1–58

    Google Scholar 

  • Yoshida S, Onishi Y, Katagiri K (1959) Role of silicon on rice nutrition. Soil Plant Food (Tokyo) 5:127–133

    Google Scholar 

  • Zhao FJ, Lombi E, Breedon T (2001) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514. doi:10.1046/j.1365-3040.2000.00569.x

    Article  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increase antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativas L.). Plant Sci 167:527–533. doi:10.1016/j.plantsci.2004.04.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Inoue and Y. Kasuya (Kyushu Univ.) for their careful reading of the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yuasa.

Additional information

Responsible Editor: Yong Chao Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isa, M., Bai, S., Yokoyama, T. et al. Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1 . Plant Soil 331, 361–375 (2010). https://doi.org/10.1007/s11104-009-0258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0258-9

Keywords

Navigation