Log in

Synthesis of CA6/AlON composite with enhanced slag resistance

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Different amounts of AlON have been introduced in calcium hexaaluminate (CA6) using two approaches, that is, one-step and two-step methods, to improve the slag resistance of CA6. A one-step method can directly sinter the mixtures combining Al2O3, CaCO3, and Al in flowing nitrogen, in which AlON clusters are always formed because of the poor wettability of Al by Al2O3, leading to the high porosity of CA6/AlON composite. In a two-step method, CA6 and AlON are prepared separately and then mixed and sintered in flowing nitrogen. Compared with the sample prepared by the one-step method, CA6 and AlON in composite by the two-step method are more uniformly distributed, and the optimized amount of AlON added is 10wt%. The slag corrosion and penetration test shows that the CA6/AlON composite using the two-step method exhibits superior slag corrosion protection. The promoted effect of AlON on slag penetration and corrosion resistance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, and G.Q. Li, Synthesis of CaO·2MgO8Al2O3 (CM2A8) and its slag resistance mechanism, J. Eur. Ceram. Soc., 37(2017), No. 4, p. 1799.

    Article  CAS  Google Scholar 

  2. B.B. Dong, B. Yuan, G. Wang, K. Chen, J.S. Han, and H.X. Li, Fabrication of porous SiC/calcium hexaluminate composites, J. Eur. Ceram. Soc., 36(2016), No. 16, p. 3889.

    Article  CAS  Google Scholar 

  3. L.C. Xu, E.H. Wang, X.M. Hou, J.H. Chen, Z.J. He, and T.X. Liang, Effect of incorporation of nitrogen on calcium hexaaluminate, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 6155.

    Article  CAS  Google Scholar 

  4. B. Li, G.Q. Li, H.Y. Chen, J.H. Chen, X.M. Hou, and Y. Li, Physical and mechanical properties of hot-press sintering ternary CM2A8 (CaMg2A116027) and C2M2A14 (Ca2Mg2Al28046)) ceramics, J. Adv. Ceram., 7(2018), No. 3, p. 229.

    Article  CAS  Google Scholar 

  5. A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, Structure refinement of CaO6Al2O3, J. Solid State Chem., 75(1988), No. 1, p. 197.

    Article  CAS  Google Scholar 

  6. C. Domínguez, J. Chevalier, R. Torrecillas, and G. Fantozzi, Microstructure development in calcium hexaluminate, J. Eur. Ceram. Soc., 21(2001), No. 3, p. 381.

    Article  Google Scholar 

  7. N. Iyi, S. Takekawa, and S. Kimura, Crystal chemistry of hexaaluminates: β-alumina and magnetoplumbite structures, J. Solid State Chem., 83(1989), No. 1, p. 8.

    Article  CAS  Google Scholar 

  8. J.H. Chen, H.Y. Chen, M.W. Yan, Z. Cao, and W.J. Mi, Formation mechanism of calcium hexaluminate, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1225.

    Article  CAS  Google Scholar 

  9. R. Salomão, V.L. Ferreira, I.R. de Oliveira, A.D.V. Souza, and W.R. Correr, Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates, J. Eur. Ceram. Soc., 36(2016), No. 16, p. 4225.

    Article  Google Scholar 

  10. D. Asmi and I.M. Low, Physical and mechanical characteristics of in situ alumina/calcium hexaluminate composites, J. Mater. Sci. Lett., 17(1998), No. 20, p. 1735.

    Article  CAS  Google Scholar 

  11. B.A. Vázquez, P. Pena, A.H. de Aza, M.A. Sainz, and A. Caballero, Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags, J. Eur. Ceram. Soc., 29(2009), No. 8, p. 1347.

    Article  Google Scholar 

  12. L. Xu, M. Chen, N. Wang, and X.L. Yin, Corrosion mechanism of MgAl2O4-CaAl4O7-CaAl12O19 composite by steel ladle slag: Effect of additives, J. Eur. Ceram. Soc., 37(2017), No. 7, p. 2737.

    Article  CAS  Google Scholar 

  13. L. Xu, X.L. Yin, N. Wang, and M. Chen, Effect of Y2O3 addition on the densification, microstructure and mechanical properties of MgAl2O4-CaAl4O7-CaAl12O19 composites, J. Alloys Compd., 702(2017), p. 472.

    Article  CAS  Google Scholar 

  14. B. Feng, Z.H. Wang, Y.H. Fan, J.H. Gu, and Y. Zhang, Creep deformation behavior during densification of ZrB2-SiBCN ceramics with ZrO2 additive, J. Adv. Ceram., 9(2020), No. 5, p. 544.

    Article  CAS  Google Scholar 

  15. S.Z. Yao, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Effectively controlling the crystal growth of Cr2O3 using SiO2 as the second phase, J. Am. Ceram. Soc., 102(2019), No. 4, p. 2187.

    CAS  Google Scholar 

  16. Q. Luo, H.Z. Gu, Y.N. Fang, A. Huang, M.J. Zhang, and Z.A. Luo, Enhancement of the densification and thermal properties of Ca2Mg2Al28O46 ceramic by MnO addition, Ceram. Int., 46(2020), No. 11, p. 18734.

    Article  CAS  Google Scholar 

  17. L. Xu, M. Chen, L.Y. **, X.L. Yin, N. Wang, and L. Liu, Effect of ZrO2 addition on densification and mechanical properties of MgAl2O4-CaAl4O7-CaAl12O19 composite, J. Am. Ceram. Soc., 98(2015), No. 12, p. 4117.

    Article  CAS  Google Scholar 

  18. M. Shabani, M.H. Paydar, and M.M. Moshksar, Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 934.

    Article  CAS  Google Scholar 

  19. Y.N. Shen, Y. **ng, P. Jiang, et al., Corrosion resistance evaluation of highly dispersed Mg-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1038.

    Article  CAS  Google Scholar 

  20. N.D. Corbin, Aluminum oxynitride spinel: A review, J. Eur. Ceram Soc., 5(1989), No. 3, p. 143.

    Article  CAS  Google Scholar 

  21. X.C. Zhong and H.L. Zhao, High-temperature properties of oxide-nonoxide refractory composites, Refractories, 34(2000), No. 2, p. 63.

    CAS  Google Scholar 

  22. Y. Hong, Y. Li, S.H. Tong, D.D. Yue, and J.J. Ma, Effect of the addition of Al powder on the microstructure and phase constitution of magnesia-spinel composites sintered at 1800°C in N2, Key Eng. Mater., 697(2016), p. 345.

    Article  Google Scholar 

  23. K. Takeda and T. Hosaka, Characteristics of new raw material AlON for refractories, Interceram, 38(1989), No. 1, p. 18.

    CAS  Google Scholar 

  24. C.H. Ma, Y. Li, P. Jiang, W.D. Xue, and J.H. Chen, Formation mechanism of γ-AlON and β-SiC reinforcements in a phenolic resin-bonded Al-Si-Al2O3 composite at 1700°C in flowing N2, J. Mater. Sci., 55(2020), No. 14, p. 5772.

    Article  CAS  Google Scholar 

  25. K. Murakami, A. Iwasaki, Y. Akatsuka, and I. Komara, One results of sliding nozzle refractories using aluminum oxynitride, Refractories, 38(1986), No. 336, p. 18.

    CAS  Google Scholar 

  26. T. Hosaka and M. Kato, A study of compositional modification of trough mixture by using aluminum oxinitride, Refractories, 37(1985), No. 333, p. 582.

    CAS  Google Scholar 

  27. W.Y. Sun and T.S. Yen, Phase relationships in the system Ca-Al--N, Mater. Lett., 8(1989), No. 5, p. 150.

    Article  CAS  Google Scholar 

  28. H.X. Willems, M.M.R.M. Hendrix, R. Metselaar, and G. de With, Thermodynamics of AlON I: Stability at lower temperatures, J. Eur. Ceram. Soc., 10(1992), No. 4, p. 327.

    Article  CAS  Google Scholar 

  29. N. Zhang, B. Liang, X.Y. Wang, H.M. Kan, K.W. Zhu, and X.J. Zhao, The pressureless sintering and mechanical properties of AlON ceramic, Mater. Sci. Eng. A, 528(2011), No. 19–20, p. 6259.

    Article  CAS  Google Scholar 

  30. Y. Wang, X.M. **e, J.Q. Qi, et al., Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method, J. Mater. Res., 29(2014), No. 19, p. 2325.

    Article  CAS  Google Scholar 

  31. M.Y. Su, Y.F. Zhou, K. Wang, Z.F. Yang, Y.G. Cao, and M.C. Hong, Highly transparent AlON sintered from powder synthesized by direct nitridation, J. Eur. Ceram. Soc., 35(2015), No. 4, p. 1173.

    Article  CAS  Google Scholar 

  32. J.L. Rodríguez-Galicia, A.H. de Aza, J.C. Rendón-Angeles, and P. Pena, The mechanism of corrosion of Mg-CaZrO3-calcium silicate materials by cement clinker, J. Eur. Ceram. Soc., 27(2007), No. 1, p. 79.

    Article  Google Scholar 

  33. Z.Y. Deng, M.Y. Zhu, B.J. Zhong, and Y.G. Dai, Metallurgical properties of refining slag with different basicities, J. Northeast. Univ. (Nat. Sci.), 33(2012), No. 4, p. 555.

    CAS  Google Scholar 

  34. E.H. Wang, J.H. Chen, X.J. Hu, K.C. Chou, and X.M. Hou, Evolution of aluminum hydroxides at the initial stage of aluminum nitride powder hydrolysis, Ceram. Int., 42(2016), No. 9, p. 11429.

    Article  CAS  Google Scholar 

  35. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117(1995), No. 1, p. 1.

    Article  CAS  Google Scholar 

  36. M. Matsui, Molecular dynamics study of the structures and bulk moduli of crystals in the system Ca-Mg-Al2O3-SiO2, Phys. Chem. Miner., 23(1996), No. 6, p. 345.

    Article  CAS  Google Scholar 

  37. C.H. Jiang, K.J. Li, J.L. Zhang, et al., Molecular dynamics simulation on the effect of MgO/Al2O3 ratio on structure and properties of blast furnace slag under different basicity conditions, Metall. Mater. Trans. B, 50(2019), No. 1, p. 367.

    Article  CAS  Google Scholar 

  38. J.E. Jones, On the determination of molecular fields. II. From the equation of state of a gas, Proc. Roy. Soc. A, 106(1924), No. 738, p. 463.

    CAS  Google Scholar 

  39. N.H. Kim, Q.D. Fun, K. Komeya, and T. Meguro, Phase reaction and sintering behavior in the pseudoternary system AlN-Y2O3-Al2O3, J. Am Ceram Soc., 79(2005), No. 10, p. 2645.

    Article  Google Scholar 

  40. P. Korgul, D.R. Wilson, and W.E. Lee, Microstructural analysis of corroded alumina-spinel castable refractories, J. Eur. Ceram Soc., 17(1997), No. 1, p. 77.

    Article  Google Scholar 

  41. J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, and C.J. Liang, Substitution of Ba for Ca in the structure of CaAl12O19, J. Am. Ceram Soc., 100(2017), No. 1, p. 413.

    Article  CAS  Google Scholar 

  42. J.W. McCauley, P. Patel, M.W. Chen, et al., AlON: A brief history of its emergence and evolution, J. Eur. Ceram. Soc., 29(2009), No. 2, p. 223.

    Article  CAS  Google Scholar 

  43. L.A. Díaz, R. Torrecillas, A.H. de Aza, and P. Pena, Effect of spinel content on slag attack resistance of high alumina refractory castables, J. Eur. Ceram. Soc., 27(2007), No. 16, p. 4623.

    Article  Google Scholar 

  44. M.A.L. Braulio, A.G.T. Martinez, A.P. Luz, C. Liebske, and V.C. Pandolfelli, Basic slag attack of spinel-containing refractory castables, Ceram. Int., 37(2011), No. 6, p. 1935.

    Article  CAS  Google Scholar 

  45. A.P. Luz, M.A.L. Braulio, A.G.T. Martinez, and V.C. Pandolfelli, Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations, Ceram. Int., 38(2012), No. 2, p. 1497.

    Article  CAS  Google Scholar 

  46. C.Y. Guo, E.H. Wang, X.M. Hou, et al., Preparation of Zr4+ doped calcium hexaaluminate with improved slag penetration resistance, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4854.

    Article  CAS  Google Scholar 

  47. M.W. Yan, Y. Li, H.Y. Li, Y. Sun, H.X. Qin, and Q.Y. Zheng, Preparation and ladle slag resistance mechanism of MgAlON bonded Al2O3-MgAlON-Zr2Al3C4-(Al2CO)1−x(AlN)x refractories, Ceram. Int., 45(2019), No. 1, p. 346.

    Article  CAS  Google Scholar 

  48. Y. Oishi, A.R. Cooper, and W.D. Kingery, Dissolution in ceramic systems: III, boundary layer concentration gradients, J. Am. Ceram. Soc., 48(1965), No. 2, p. 88.

    Article  CAS  Google Scholar 

  49. Y. Park and D.J. Min, Sulfide capacity of Ca-SiO2-Fe-Al2O3-MgOsatd slag, ISIJ Int., 56(2016), No. 4, p. 520.

    Article  CAS  Google Scholar 

  50. J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298.

    Article  Google Scholar 

  51. C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of Ca-SiO2-Al2O3-Mg-Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 5202 5041), the National Natural Science Foundation of China (Nos. 51904021, 51974021, 52174294, and 51902020), the Fundamental Research Funds for the Central Universities (No. FRF-TP-19-008A1), the Project of Liaoning Province’s “Rejuvenating Liaoning Talents Plan”, China (No. XLYC 1902092), and the Bei**g Excellent Talents Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enhui Wang or **nmei Hou.

Additional information

Conflict of Interest

The authors declare no financial/commercial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, E., Xu, L. et al. Synthesis of CA6/AlON composite with enhanced slag resistance. Int J Miner Metall Mater 30, 756–765 (2023). https://doi.org/10.1007/s12613-022-2435-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2435-2

Keywords

Navigation